Superhygroscopic Aerogels with Hierarchical String-Bag Structure for Effective Humidity Control

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-04-21 DOI:10.1021/acsnano.5c00979
Qinying Nan, Chunchun Yin, Runyu Tian, Jing Zhang, Jinfeng Wang, Chenghu Yan, Jinming Zhang, Jin Wu, Jun Zhang
{"title":"Superhygroscopic Aerogels with Hierarchical String-Bag Structure for Effective Humidity Control","authors":"Qinying Nan, Chunchun Yin, Runyu Tian, Jing Zhang, Jinfeng Wang, Chenghu Yan, Jinming Zhang, Jin Wu, Jun Zhang","doi":"10.1021/acsnano.5c00979","DOIUrl":null,"url":null,"abstract":"Environmental humidity regulation is crucial for diverse applications ranging from healthcare, food preservation, drug storage, to electronics protection. Herein, we employed natural cellulose as the raw material to fabricate superhygroscopic aerogels with hierarchical string-bag structure for effective humidity control. The aggregation state of cellulose chains was regulated to fabricate micronano materials, including the cellulose nanofiber network (CNFN), dendritic microfibers (CDF), and pleated microfibers (CPF), via changing the precipitation process of cellulose/ionic liquid solutions. They immobilized hygroscopic salts (LiCl, CaCl<sub>2</sub>, and MgSO<sub>4</sub>) to form uniform aerogels featuring micrometer macropores and nanometer string-bags. The molecular-level distribution of metal salts along the macropore wall and nanofibers, combined with the high hydrophilicity of cellulose, enabled rapid moisture absorption from the environment and transportation within the hierarchical string-bag structure. Moreover, the micronano hierarchical structure was conducive to the water storage. CNFN/LiCl aerogel demonstrated exceptional moisture absorption performance, achieving a water uptake of 1.36 and 3.14 g/g at 30% and 70% RH, respectively. Such superhygroscopic materials could rapidly and effectively control the environmental humidity, indicating a huge potential in food preservation, healthcare, and environmental regulation.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"43 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00979","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental humidity regulation is crucial for diverse applications ranging from healthcare, food preservation, drug storage, to electronics protection. Herein, we employed natural cellulose as the raw material to fabricate superhygroscopic aerogels with hierarchical string-bag structure for effective humidity control. The aggregation state of cellulose chains was regulated to fabricate micronano materials, including the cellulose nanofiber network (CNFN), dendritic microfibers (CDF), and pleated microfibers (CPF), via changing the precipitation process of cellulose/ionic liquid solutions. They immobilized hygroscopic salts (LiCl, CaCl2, and MgSO4) to form uniform aerogels featuring micrometer macropores and nanometer string-bags. The molecular-level distribution of metal salts along the macropore wall and nanofibers, combined with the high hydrophilicity of cellulose, enabled rapid moisture absorption from the environment and transportation within the hierarchical string-bag structure. Moreover, the micronano hierarchical structure was conducive to the water storage. CNFN/LiCl aerogel demonstrated exceptional moisture absorption performance, achieving a water uptake of 1.36 and 3.14 g/g at 30% and 70% RH, respectively. Such superhygroscopic materials could rapidly and effectively control the environmental humidity, indicating a huge potential in food preservation, healthcare, and environmental regulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有分层串袋结构的超吸湿气凝胶可有效控制湿度
环境湿度调节对于从医疗保健、食品保鲜、药品储存到电子产品保护等各种应用至关重要。在此,我们以天然纤维素为原料,制备了具有分层串袋结构的超吸湿气凝胶,以实现有效的湿度控制。通过改变纤维素/离子液体溶液的沉淀过程,调节纤维素链的聚集状态,制备出纤维素纳米纤维网(CNFN)、树枝状微纤维(CDF)和褶皱微纤维(CPF)等微纳米材料。他们固定了吸湿盐(氯化锂、氯化钙和硫酸镁),形成了具有微米级大孔和纳米级串囊的均匀气凝胶。金属盐沿着大孔壁和纳米纤维的分子级分布,再加上纤维素的高亲水性,使其能够快速吸收环境中的水分,并在分层串囊结构中传输。此外,微纳米分层结构还有利于储水。CNFN/LiCl 气凝胶具有优异的吸湿性能,在 30% 和 70% 相对湿度条件下的吸水率分别为 1.36 和 3.14 g/g。这种超吸湿材料能快速有效地控制环境湿度,在食品保鲜、医疗保健和环境调节方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Low-Field Terahertz Quantum Tunneling in Metal–TiO2–Metal Nanogaps via Schottky Barrier Engineering High Sensitivity, All-Organic Piezoelectric Skin Enabled by a Phytic Acid-Assisted Molecular Engineering Strategy Reconfigurable Electromagnetically Unclonable Functions Based on Graphene Radio-Frequency Modulators. Layer-Dependent Transport Properties of the Magnetic Topological Material EuSn2As2 Down to a Two-Dimensional Limit Aggregation-Enhanced Piezoelectric Nanotransducers Facilitate Transgene-Free Wireless Neurostimulation under Low-Intensity Focused Ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1