Enhancing Mg3(Bi, Sb)2 thermoelectric performance via ZrSb1-x modified grain-boundary

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-04-22 DOI:10.1016/j.mtphys.2025.101733
Qintuo Zhang , Zhen Fan , Xiaofan Zhang , Nan Chen , Kaiwei Guo , Qi Zhao , Yi Wang , Chengpeng Pan , Shuai Qi , Xuan Zhou , Guannan Li , Yang Liu , Congcong Liu , Yibao Liu , Jingkun Xu , Huaizhou Zhao , Hangtian Zhu
{"title":"Enhancing Mg3(Bi, Sb)2 thermoelectric performance via ZrSb1-x modified grain-boundary","authors":"Qintuo Zhang ,&nbsp;Zhen Fan ,&nbsp;Xiaofan Zhang ,&nbsp;Nan Chen ,&nbsp;Kaiwei Guo ,&nbsp;Qi Zhao ,&nbsp;Yi Wang ,&nbsp;Chengpeng Pan ,&nbsp;Shuai Qi ,&nbsp;Xuan Zhou ,&nbsp;Guannan Li ,&nbsp;Yang Liu ,&nbsp;Congcong Liu ,&nbsp;Yibao Liu ,&nbsp;Jingkun Xu ,&nbsp;Huaizhou Zhao ,&nbsp;Hangtian Zhu","doi":"10.1016/j.mtphys.2025.101733","DOIUrl":null,"url":null,"abstract":"<div><div>Grain boundaries, as critical structural defects in materials, play a pivotal role in thermoelectric research. Mg<sub>3</sub>(Bi, Sb)<sub>2</sub>-based materials, which are prominent n-type thermoelectric materials, are significantly affected by the second phase at grain boundaries. This study investigates the influence of ZrSb<sub>1-x</sub> on the thermoelectric properties of Mg<sub>3</sub>(Bi, Sb)<sub>2</sub>, with particular focus on its impact on the chemical environment at grain boundaries. The ZrSb<sub>2</sub> exacerbates the loss of Mg, resulting in a transition of the material from n-type to p-type conductivity. In contrast, the ZrSb<sub>3/5</sub> mitigates the formation of Bi-rich precipitate, reduces the interfacial potential barriers, and enhances grain growth. A sample containing 5 % ZrSb<sub>3/5</sub> achieved a room temperature <em>zT</em> of 0.9, and the formation of <span><math><mo>&lt;</mo><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn><mo>&gt;</mo></math></span> twins was observed. Furthermore, a thermoelectric device composed of this material, paired with commercial p-type Bi<sub>2</sub>Te<sub>3</sub>, demonstrated a maximum temperature difference of 67 K and a peak cooling power density of 1.2 W/cm<sup>2</sup>. The mathematical relationship between the device's COP under any operating condition and its fundamental parameters (<em>Q</em><sub>c,max</sub>, Δ<em>T</em><sub>max</sub> and <em>I</em><sub>max</sub>) was derived.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101733"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000896","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Grain boundaries, as critical structural defects in materials, play a pivotal role in thermoelectric research. Mg3(Bi, Sb)2-based materials, which are prominent n-type thermoelectric materials, are significantly affected by the second phase at grain boundaries. This study investigates the influence of ZrSb1-x on the thermoelectric properties of Mg3(Bi, Sb)2, with particular focus on its impact on the chemical environment at grain boundaries. The ZrSb2 exacerbates the loss of Mg, resulting in a transition of the material from n-type to p-type conductivity. In contrast, the ZrSb3/5 mitigates the formation of Bi-rich precipitate, reduces the interfacial potential barriers, and enhances grain growth. A sample containing 5 % ZrSb3/5 achieved a room temperature zT of 0.9, and the formation of <101¯1> twins was observed. Furthermore, a thermoelectric device composed of this material, paired with commercial p-type Bi2Te3, demonstrated a maximum temperature difference of 67 K and a peak cooling power density of 1.2 W/cm2. The mathematical relationship between the device's COP under any operating condition and its fundamental parameters (Qc,max, ΔTmax and Imax) was derived.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 ZrSb1-x 改良晶界提高 Mg3(Bi, Sb)2 热电性能
晶界作为材料中重要的结构缺陷,在热电研究中起着举足轻重的作用。Mg3(Bi, Sb)2基材料是一种突出的n型热电材料,晶界处的第二相对其影响较大。本文研究了ZrSb1-x对Mg3(Bi, Sb)2热电性能的影响,重点研究了ZrSb1-x对晶界化学环境的影响。ZrSb2加剧了Mg的损失,导致材料从n型电导率转变为p型电导率。相反,ZrSb3/5减缓了富bi析出相的形成,降低了界面势垒,促进了晶粒的生长。含有5% ZrSb3/5的样品室温zT为0.9,形成<;双胞胎被观察到。此外,由该材料组成的热电器件与商业p型Bi2Te3配对,显示出最大温差为67 K,峰值冷却功率密度为1.2 W/cm2。推导了设备在任何工况下的COP与其基本参数(Qc、max、ΔTmax和Imax)之间的数学关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Synergistic dual-additive engineering for high-performance and air-stable CsPbBr3 perovskite solar cells Enhancing Outcoupling of Near-Field Radiative Heat Transfer via Magnetic Dipole Resonance Probing phonon mean-free-path distribution via thickness-dependent thermal conductivity in epitaxial SrSnO3 Realization of defects evolution for boosting thermoelectric properties in Sb doped PbSe Skin-inspired soft bioelectronic epidermal sensing, implantable applications and system integrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1