Crystal plane engineering of BiOCl for enhanced chloride-ion storage and saline water deionization performances

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL Separation and Purification Technology Pub Date : 2025-04-22 DOI:10.1016/j.seppur.2025.133170
Xingyu Wang , Jie Zhou , Shuangjia Weng , Xiaoxiao Lu , Yang Xia
{"title":"Crystal plane engineering of BiOCl for enhanced chloride-ion storage and saline water deionization performances","authors":"Xingyu Wang ,&nbsp;Jie Zhou ,&nbsp;Shuangjia Weng ,&nbsp;Xiaoxiao Lu ,&nbsp;Yang Xia","doi":"10.1016/j.seppur.2025.133170","DOIUrl":null,"url":null,"abstract":"<div><div>BiOCl-based materials are promising for chloride-ion storage and saline water deionization; however, their limited intercalation contributions and slow reaction kinetics hinder cyclability and chloride-ion storage capacities. In this work, crystal plane engineering using a simple pH adjustment method optimizes the crystallographic orientation and grain sizes of BiOCl, resulting in improved chloride-ion storage performances in aqueous-based electrochemical systems. When paired with an Ag electrode, samples demonstrate an exceptional chloride-ion storage capacity of 122.61 mAh g<sup>−1</sup> at 0.3 A g<sup>−1</sup> with excellent capacity retention of 90.1 % after 120 cycles and exhibit a rate capacity of 85.12 mAh g<sup>−1</sup> at 2 A g<sup>−1</sup>. In desalination systems (paired with a Prussian blue electrode), they achieve a desalination capacity of 74.75 mg g<sup>−1</sup> at 1.2 V and maintain a capacity of 58.47 mg g<sup>−1</sup> after 30 cycles. DFT calculations and experiments reveal that increased exposure of the (110) crystal plane could slightly reduce chloride ion diffusion coefficients and hinder charge transfer while enhancing pseudocapacitive contributions. <em>In-situ</em> XRD results further confirm that crystallographic orientation promotes a higher proportion of intercalation reactions, improving electrode utilization and reversibility. This trade-off between ion diffusion, pseudocapacity, and reaction reversibility leads to superior electrochemical performances, providing insights for optimizing BiOCl-based anodes for long-term stability and multifunctional applications in chloride-ion storage and saline water deionization.</div></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"369 ","pages":"Article 133170"},"PeriodicalIF":9.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586625017678","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

BiOCl-based materials are promising for chloride-ion storage and saline water deionization; however, their limited intercalation contributions and slow reaction kinetics hinder cyclability and chloride-ion storage capacities. In this work, crystal plane engineering using a simple pH adjustment method optimizes the crystallographic orientation and grain sizes of BiOCl, resulting in improved chloride-ion storage performances in aqueous-based electrochemical systems. When paired with an Ag electrode, samples demonstrate an exceptional chloride-ion storage capacity of 122.61 mAh g−1 at 0.3 A g−1 with excellent capacity retention of 90.1 % after 120 cycles and exhibit a rate capacity of 85.12 mAh g−1 at 2 A g−1. In desalination systems (paired with a Prussian blue electrode), they achieve a desalination capacity of 74.75 mg g−1 at 1.2 V and maintain a capacity of 58.47 mg g−1 after 30 cycles. DFT calculations and experiments reveal that increased exposure of the (110) crystal plane could slightly reduce chloride ion diffusion coefficients and hinder charge transfer while enhancing pseudocapacitive contributions. In-situ XRD results further confirm that crystallographic orientation promotes a higher proportion of intercalation reactions, improving electrode utilization and reversibility. This trade-off between ion diffusion, pseudocapacity, and reaction reversibility leads to superior electrochemical performances, providing insights for optimizing BiOCl-based anodes for long-term stability and multifunctional applications in chloride-ion storage and saline water deionization.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为提高氯离子储存和盐水去离子性能而进行的生物OCl 晶体平面工程设计
生物基材料在氯离子储存和盐水去离子化方面具有广阔的应用前景;然而,它们有限的插层作用和缓慢的反应动力学阻碍了循环性和氯离子存储能力。在这项工作中,晶体平面工程使用简单的pH调节方法优化了BiOCl的晶体取向和晶粒尺寸,从而提高了水基电化学体系中氯离子的存储性能。当与Ag电极配对时,样品在0.3 Ag−1下表现出122.61 mAh g−1的优异氯离子存储容量,在120次循环后表现出90.1 %的优异容量保持,在2 Ag−1下表现出85.12 mAh g−1的倍率容量。在脱盐系统中(与普鲁士蓝电极配对),它们在1.2 V下实现74.75 mg g - 1的脱盐能力,并在30次循环后保持58.47 mg g - 1的容量。DFT计算和实验表明,增加(110)晶面的暴露可以略微降低氯离子扩散系数,阻碍电荷转移,同时增加假电容贡献。原位XRD结果进一步证实,晶体取向促进了更高比例的插层反应,提高了电极利用率和可逆性。这种离子扩散、赝容量和反应可逆性之间的权衡导致了优越的电化学性能,为优化基于biocl的阳极提供了长期稳定性和在氯离子储存和盐水去离子化中的多功能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
期刊最新文献
Recent progress in polyvinyl alcohol-based pervaporation membranes for water desalination: An up-to-date review Unraveling the mechanism of biogenic manganese oxides enhanced pollutant removal in gravity-driven membrane systems for decentralized wastewater treatment: The role of microbial activity Amino-functionalized MIL-101(Fe)/BiOBr@304SS photo-Fenton catalyst: An innovative strategy for the efficient and scalable degradation of ciprofloxacin Three-dimensional CFD–PBM insights into bubble dynamics and interfacial momhentum transfer in bubble columns A potential DES-driven membrane applied in electrodialysis coupled extraction for the ultra-high separation of 7Li isotopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1