Ionic current rectification behaviors in quartz nanopipettes with ionic liquids/aqueous solution systems

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-04-22 DOI:10.1016/j.electacta.2025.146282
Xiaodong He, Xingjin Xiao, Yongxiang Guan, Xinshuang Cui
{"title":"Ionic current rectification behaviors in quartz nanopipettes with ionic liquids/aqueous solution systems","authors":"Xiaodong He,&nbsp;Xingjin Xiao,&nbsp;Yongxiang Guan,&nbsp;Xinshuang Cui","doi":"10.1016/j.electacta.2025.146282","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding ion transport behaviors in confined ionic liquid (IL)/aqueous solution systems is crucial for advancing nanofluidic device applications. In this study, we investigate the ionic current behaviors of such systems using quartz nanopipettes, revealing significant ionic current rectification (ICR) phenomena at the nanoscale, which are absent at the microscale. Experimental results show that in the absence of an external bias voltage, diffusion currents in nanopipettes are negative due to the liquid-junction potential at the IL/aqueous interface. The rectification ratio (R) increases from 1.47 to 11.64 as the KCl electrolyte concentration increases from 0.01 M to 1 M, indicating a unique behavior distinct from conventional aqueous systems. Additionally, different ILs exhibit varying rectification strengths, following the sequence: [Bmim][BF<sub>4</sub>] &gt; [Bmim][NTf<sub>2</sub>] &gt; [Bmim][PF<sub>6</sub>] &gt; [Bmim][N(CN)<sub>2</sub>]. To further elucidate the underlying mechanisms, we conducted finite element simulation using a Poisson-Nernst-Planck model. The simulation results further demonstrate that IL diffusion, electrostatic interactions, and electric double layer effects collectively influence the observed ICR behavior. These findings provide new insights into ion transport in IL/aqueous systems and offer valuable guidelines for designing nanopipette-based ion sensors and nanofluidic devices.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"528 ","pages":"Article 146282"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625006437","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding ion transport behaviors in confined ionic liquid (IL)/aqueous solution systems is crucial for advancing nanofluidic device applications. In this study, we investigate the ionic current behaviors of such systems using quartz nanopipettes, revealing significant ionic current rectification (ICR) phenomena at the nanoscale, which are absent at the microscale. Experimental results show that in the absence of an external bias voltage, diffusion currents in nanopipettes are negative due to the liquid-junction potential at the IL/aqueous interface. The rectification ratio (R) increases from 1.47 to 11.64 as the KCl electrolyte concentration increases from 0.01 M to 1 M, indicating a unique behavior distinct from conventional aqueous systems. Additionally, different ILs exhibit varying rectification strengths, following the sequence: [Bmim][BF4] > [Bmim][NTf2] > [Bmim][PF6] > [Bmim][N(CN)2]. To further elucidate the underlying mechanisms, we conducted finite element simulation using a Poisson-Nernst-Planck model. The simulation results further demonstrate that IL diffusion, electrostatic interactions, and electric double layer effects collectively influence the observed ICR behavior. These findings provide new insights into ion transport in IL/aqueous systems and offer valuable guidelines for designing nanopipette-based ion sensors and nanofluidic devices.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子液体/水溶液体系中石英纳米吸管的离子电流整流行为
了解离子液体/水溶液体系中的离子输运行为对于推进纳米流体器件的应用至关重要。在这项研究中,我们使用石英纳米吸管研究了这些体系的离子电流行为,揭示了在纳米尺度上不存在的显著的离子电流整流(ICR)现象。实验结果表明,在没有外部偏置电压的情况下,由于液/水界面处的液结电位,纳米吸管中的扩散电流为负。当KCl电解质浓度从0.01 M增加到1 M时,整流比(R)从1.47增加到11.64,表现出与传统水溶液体系不同的独特行为。此外,不同的ILs表现出不同的整流强度,顺序如下:[Bmim] [BF4]>;[Bmim] [NTf2]比;[Bmim] [PF6]比;[Bmim] [N (CN) 2]。为了进一步阐明潜在的机制,我们使用泊松-能-普朗克模型进行了有限元模拟。模拟结果进一步表明,IL扩散、静电相互作用和双电层效应共同影响观察到的ICR行为。这些发现为离子在IL/水系统中的传输提供了新的见解,并为设计基于纳米管的离子传感器和纳米流体装置提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Enhancing Corrosion Resistance of Commercially Pure Titanium by High-Speed Friction Stir Processing for Biomedical Applications Enhanced photocathodic protection performance of calcinated WO3/BiVO4/Ti3C2 quantum dots heterojunction coating and its multifunctional applications Predictive physical parameters for reproducible electrochemical detection of α-hemolysin with tBLMs on FTO substrates A Regenerable Tin Gas Diffusion Electrode as a Durable and Cost-Effective Cathode for Large-Scale CO2 Reduction with Enhanced Viability via Brine Co-Electrolysis Single-Atom Cobalt modified Amorphous WO3·xH2O for Enhanced Electrochromic Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1