{"title":"Volatile-char interactions during biomass pyrolysis: Effect of decoupled primary and secondary interactions on product control","authors":"Anjiang Gao, Hekuan Fu, Weiwei Wu, Shihao Lv, Wenran Gao, Nanfeng Zhu, Yong Huang, Félix Mérimé Bkangmo Kontchouo, Shu Zhang","doi":"10.1016/j.fuel.2025.135410","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an innovative double-layer reactor that decouples volatile-char interactions into distinct primary and secondary interactions, allowing for a systematic investigation of their respective effects on the pyrolysis behavior of poplar wood (PW) and the characteristics of the resulting products. Following primary interactions, a significant enhancement in bio-oil yield was observed, reaching 57.92 wt%, with anhydrosugars accounting for 13.27 % of the bio-oil composition. Concurrently, the non-condensable gas composition exhibited substantial concentrations of CO and CH<sub>4</sub>, constituting 29.05 % and 12.26 % of the gaseous products, respectively. Through controlled secondary interactions, the content of phenols and other aromatics in bio-oil ultimately reached 55.08 %. Simultaneously, the added activated carbon in interlayer demonstrated significant compositional modifications that the volatile content increased from 3.78 to 9.77 wt%, accompanied by a corresponding reduction in oxygen content to 5.73 wt%. The pore structure of activated carbon was also altered after secondary interactions. The innovative double-layer reactor enables precise control over pyrolysis product distribution and quality through its two-stage volatile-char interaction mechanism, establishing a technologically viable pathway for industrial-scale valorization of waste biomass.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"397 ","pages":"Article 135410"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125011354","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes an innovative double-layer reactor that decouples volatile-char interactions into distinct primary and secondary interactions, allowing for a systematic investigation of their respective effects on the pyrolysis behavior of poplar wood (PW) and the characteristics of the resulting products. Following primary interactions, a significant enhancement in bio-oil yield was observed, reaching 57.92 wt%, with anhydrosugars accounting for 13.27 % of the bio-oil composition. Concurrently, the non-condensable gas composition exhibited substantial concentrations of CO and CH4, constituting 29.05 % and 12.26 % of the gaseous products, respectively. Through controlled secondary interactions, the content of phenols and other aromatics in bio-oil ultimately reached 55.08 %. Simultaneously, the added activated carbon in interlayer demonstrated significant compositional modifications that the volatile content increased from 3.78 to 9.77 wt%, accompanied by a corresponding reduction in oxygen content to 5.73 wt%. The pore structure of activated carbon was also altered after secondary interactions. The innovative double-layer reactor enables precise control over pyrolysis product distribution and quality through its two-stage volatile-char interaction mechanism, establishing a technologically viable pathway for industrial-scale valorization of waste biomass.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.