Na Qu , Abdelkader Daoud , Daniel O. Kechele , Cassie E. Cleary , Jorge O. Múnera
{"title":"Differentiation of human pluripotent stem cells into urothelial organoids via transient activation of WNT signaling","authors":"Na Qu , Abdelkader Daoud , Daniel O. Kechele , Cassie E. Cleary , Jorge O. Múnera","doi":"10.1016/j.isci.2025.112398","DOIUrl":null,"url":null,"abstract":"<div><div>The cloaca is a transient structure that forms in the terminal hindgut giving rise to the rectum dorsally and the urogenital sinus ventrally. Similarly, human hindgut cultures derived from human pluripotent stem cells generate human colonic organoids (HCOs) which also contain co-developing urothelial tissue. In this study, our goal was to identify pathways involved in cloacal patterning and apply this to human hindgut cultures. RNA sequencing (RNA-seq) data comparing dorsal versus ventral cloaca in e10.5 mice revealed that WNT signaling was elevated in the ventral versus dorsal cloaca. Inhibition of WNT signaling in hindgut cultures maintained their differentiation toward colonic organoids. WNT activation promoted differentiation toward human urothelial organoids (HUOs). HUOs contained developmental stage specific cell types present in mammalian urothelial tissue including co-developing mesenchyme. Therefore, HUOs offer a powerful <em>in vitro</em> model for dissecting the regulatory pathways that control the dynamic emergence of stage specific cell types within the human urothelium.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 5","pages":"Article 112398"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225006595","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The cloaca is a transient structure that forms in the terminal hindgut giving rise to the rectum dorsally and the urogenital sinus ventrally. Similarly, human hindgut cultures derived from human pluripotent stem cells generate human colonic organoids (HCOs) which also contain co-developing urothelial tissue. In this study, our goal was to identify pathways involved in cloacal patterning and apply this to human hindgut cultures. RNA sequencing (RNA-seq) data comparing dorsal versus ventral cloaca in e10.5 mice revealed that WNT signaling was elevated in the ventral versus dorsal cloaca. Inhibition of WNT signaling in hindgut cultures maintained their differentiation toward colonic organoids. WNT activation promoted differentiation toward human urothelial organoids (HUOs). HUOs contained developmental stage specific cell types present in mammalian urothelial tissue including co-developing mesenchyme. Therefore, HUOs offer a powerful in vitro model for dissecting the regulatory pathways that control the dynamic emergence of stage specific cell types within the human urothelium.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.