{"title":"Mechanisms, structure-activity relationships, and skin applications of natural polysaccharides in anti-aging: A review","authors":"Xiujuan Li , Qingqi Su , Jingwei Xue , Song Wei","doi":"10.1016/j.ijbiomac.2025.143320","DOIUrl":null,"url":null,"abstract":"<div><div>Natural polysaccharides, a class of biological macromolecules found in nature, have recently attracted considerable interest owing to their notable anti-aging capabilities. This article provides a comprehensive review of the intricate mechanisms through which natural polysaccharides combat aging, as well as their applications in addressing skin aging. Primarily, these polysaccharides manifest their anti-aging effects via diverse pathways, such as antioxidation, gut microbiota regulation, metabolic modulation, and immune system regulation. The anti-aging efficacy of natural polysaccharides is intrinsically linked to their structure-activity relationships, with critical determinants including molecular weight, monosaccharide composition, and chemical architecture. Polysaccharides with lower molecular weights typically demonstrate enhanced biological activity, whereas specific monosaccharide configurations and chemical modifications can markedly augment their anti-aging potential. The utilization of natural polysaccharides in skin aging holds significant promise, offering benefits such as anti-aging, wrinkle reduction, anti-glycation, and the facilitation of skin regeneration. In conclusion, this article synthesizes the advancements in research on natural polysaccharides within the anti-aging sector and forecasts future trajectories, to establish a robust foundation for the innovation of new polysaccharide-derived anti-aging formulations.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"310 ","pages":"Article 143320"},"PeriodicalIF":8.5000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025038723","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Natural polysaccharides, a class of biological macromolecules found in nature, have recently attracted considerable interest owing to their notable anti-aging capabilities. This article provides a comprehensive review of the intricate mechanisms through which natural polysaccharides combat aging, as well as their applications in addressing skin aging. Primarily, these polysaccharides manifest their anti-aging effects via diverse pathways, such as antioxidation, gut microbiota regulation, metabolic modulation, and immune system regulation. The anti-aging efficacy of natural polysaccharides is intrinsically linked to their structure-activity relationships, with critical determinants including molecular weight, monosaccharide composition, and chemical architecture. Polysaccharides with lower molecular weights typically demonstrate enhanced biological activity, whereas specific monosaccharide configurations and chemical modifications can markedly augment their anti-aging potential. The utilization of natural polysaccharides in skin aging holds significant promise, offering benefits such as anti-aging, wrinkle reduction, anti-glycation, and the facilitation of skin regeneration. In conclusion, this article synthesizes the advancements in research on natural polysaccharides within the anti-aging sector and forecasts future trajectories, to establish a robust foundation for the innovation of new polysaccharide-derived anti-aging formulations.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.