{"title":"Microstructures and properties of selective laser melted K447A/IN718 Ni-based superalloy composites","authors":"Yu Zhang , Zhen Ding , Bing Tian , Fengchun Jiang , Mehrdad Zarinejad , Yunxiang Tong","doi":"10.1016/j.matlet.2025.138598","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) has become a crucial technique for fabricating high-performance superalloys. K447A, a promising candidate for high-temperature applications, exhibits significant cracking issues during AM processing. In this study, a mixture of K447A and IN718 powders was processed via selective laser melting (SLM) to enhance mechanical properties and minimize cracking. The optimal composition was identified as KI28 (20% K447A, 80% IN718). Microstructural analysis revealed that KI28 exhibited the smallest laser melt pool area and a short-chain Laves phase morphology, reducing crack formation. Additionally, mechanical testing demonstrated that the increased IN718 content improved tensile strength and ductility. These findings provide valuable insights for optimizing Ni-based superalloys through AM processing.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"393 ","pages":"Article 138598"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25006275","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) has become a crucial technique for fabricating high-performance superalloys. K447A, a promising candidate for high-temperature applications, exhibits significant cracking issues during AM processing. In this study, a mixture of K447A and IN718 powders was processed via selective laser melting (SLM) to enhance mechanical properties and minimize cracking. The optimal composition was identified as KI28 (20% K447A, 80% IN718). Microstructural analysis revealed that KI28 exhibited the smallest laser melt pool area and a short-chain Laves phase morphology, reducing crack formation. Additionally, mechanical testing demonstrated that the increased IN718 content improved tensile strength and ductility. These findings provide valuable insights for optimizing Ni-based superalloys through AM processing.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive