A machine learning multimodal profiling of Per- and Polyfluoroalkyls (PFAS) distribution across animal species organs via clustering and dimensionality reduction techniques

IF 8 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Research International Pub Date : 2025-04-19 DOI:10.1016/j.foodres.2025.116463
Ali Sani , Ibrahim Lawal Abdullahi , Abba Salisu , Habibu Magaji Tukur , Ahmad Kabir Maigari
{"title":"A machine learning multimodal profiling of Per- and Polyfluoroalkyls (PFAS) distribution across animal species organs via clustering and dimensionality reduction techniques","authors":"Ali Sani ,&nbsp;Ibrahim Lawal Abdullahi ,&nbsp;Abba Salisu ,&nbsp;Habibu Magaji Tukur ,&nbsp;Ahmad Kabir Maigari","doi":"10.1016/j.foodres.2025.116463","DOIUrl":null,"url":null,"abstract":"<div><div><em>Per</em>- and polyfluoroalkyl substances (PFAS) contamination in aquatic and terrestrial organisms poses significant environmental and health risks. This study quantified 15 PFAS compounds across various tissues (liver, kidney, gill, muscle, skin, lung, blood, breast, feather) from fish (<em>Clarias gariepinus, Oreochromis niloticus, Lates niloticus, Tilapia zilli</em>), livestock (camel, cow, sheep, ram, goat), and birds (pigeon, chicken, turkey). Among the fishes, <em>C. gariepinus</em> exhibited the highest PFAS accumulation, with PFOA (46.5 ng/g) and PFTrDA (50.1 ng/g) dominant in liver and kidney, while <em>O. niloticus</em> showed elevated PFTrDA (56.87 ng/g) and PFUnDA (29.43 ng/g). In livestock, camel liver contained high PFNA (9.22 ng/g), and cow liver had the highest PFOS (8.1 ng/g). Among the birds, pigeon liver showed the highest PFNA (7.83 ng/g). To analyze PFAS distribution patterns, dimensionality reduction and clustering techniques were employed. Principal Component Analysis (PCA) captured 68.28 % of total variance, revealing two distinct clusters whereby fish species are strongly related with higher PFAS concentration, while poultry showed unique PFAS profiles when compared to other types of meat. Clustering of PFOS, PFOA, and other PFAS compounds near the center explained their influence across the general meat types particularly the fish species, while t-Distributed Stochastic Neighbor Embedding (t-SNE) confirmed clear separations in high-dimensional space. Clustering analyses, including K-means, hierarchical clustering, DBSCAN, and Gaussian Mixture Models (GMM), identified well-defined patterns, with DBSCAN and GMM detecting overlapping categories and outliers. Feature importance analysis using a Random Forest model highlighted total PFAS as the most significant predictor, with PFHxA and PFDODA also contributing strongly, while organ type and species played a lesser role. These findings demonstrate the effectiveness of unsupervised learning techniques in characterizing PFAS bioaccumulation patterns across species and tissues, providing valuable information for ecological and toxicological risk assessments.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"211 ","pages":"Article 116463"},"PeriodicalIF":8.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925008014","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) contamination in aquatic and terrestrial organisms poses significant environmental and health risks. This study quantified 15 PFAS compounds across various tissues (liver, kidney, gill, muscle, skin, lung, blood, breast, feather) from fish (Clarias gariepinus, Oreochromis niloticus, Lates niloticus, Tilapia zilli), livestock (camel, cow, sheep, ram, goat), and birds (pigeon, chicken, turkey). Among the fishes, C. gariepinus exhibited the highest PFAS accumulation, with PFOA (46.5 ng/g) and PFTrDA (50.1 ng/g) dominant in liver and kidney, while O. niloticus showed elevated PFTrDA (56.87 ng/g) and PFUnDA (29.43 ng/g). In livestock, camel liver contained high PFNA (9.22 ng/g), and cow liver had the highest PFOS (8.1 ng/g). Among the birds, pigeon liver showed the highest PFNA (7.83 ng/g). To analyze PFAS distribution patterns, dimensionality reduction and clustering techniques were employed. Principal Component Analysis (PCA) captured 68.28 % of total variance, revealing two distinct clusters whereby fish species are strongly related with higher PFAS concentration, while poultry showed unique PFAS profiles when compared to other types of meat. Clustering of PFOS, PFOA, and other PFAS compounds near the center explained their influence across the general meat types particularly the fish species, while t-Distributed Stochastic Neighbor Embedding (t-SNE) confirmed clear separations in high-dimensional space. Clustering analyses, including K-means, hierarchical clustering, DBSCAN, and Gaussian Mixture Models (GMM), identified well-defined patterns, with DBSCAN and GMM detecting overlapping categories and outliers. Feature importance analysis using a Random Forest model highlighted total PFAS as the most significant predictor, with PFHxA and PFDODA also contributing strongly, while organ type and species played a lesser role. These findings demonstrate the effectiveness of unsupervised learning techniques in characterizing PFAS bioaccumulation patterns across species and tissues, providing valuable information for ecological and toxicological risk assessments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过聚类和降维技术对全氟和多氟烷基(PFAS)在动物物种器官中的分布进行机器学习多模态分析
水生和陆生生物中的全氟和多氟烷基物质污染构成重大的环境和健康风险。本研究对来自鱼类(Clarias gariepinus、Oreochromis niloticus、Lates niloticus、罗非鱼)、牲畜(骆驼、牛、绵羊、公羊、山羊)和鸟类(鸽子、鸡、火鸡)的各种组织(肝脏、肾脏、鳃、肌肉、皮肤、肺、血液、乳房、羽毛)中的15种PFAS化合物进行了量化。在鱼类中,加利平鲫(C. gariepinus)的PFAS积累量最高,肝脏和肾脏中PFOA (46.5 ng/g)和PFTrDA (50.1 ng/g)富集,而尼罗ticus的PFTrDA (56.87 ng/g)和pffunda (29.43 ng/g)富集。牲畜中,全氟辛烷磺酸含量最高的是骆驼肝脏(9.22 ng/g),最高的是牛肝脏(8.1 ng/g)。其中,鸽肝的PFNA含量最高,为7.83 ng/g。为了分析PFAS的分布模式,采用降维和聚类技术。主成分分析(PCA)捕获了总方差的68.28%,揭示了两个不同的集群,其中鱼类与较高的PFAS浓度密切相关,而与其他类型的肉类相比,家禽表现出独特的PFAS特征。PFOS、PFOA和其他PFAS化合物在中心附近的聚类解释了它们对一般肉类特别是鱼类的影响,而t分布随机邻居嵌入(t-SNE)证实了高维空间中的明显分离。聚类分析,包括K-means、分层聚类、DBSCAN和高斯混合模型(GMM),确定了定义良好的模式,DBSCAN和GMM检测重叠的类别和异常值。使用随机森林模型的特征重要性分析显示,PFAS总量是最显著的预测因子,PFHxA和PFDODA也有重要作用,而器官类型和物种的作用较小。这些发现证明了无监督学习技术在表征PFAS跨物种和组织的生物积累模式方面的有效性,为生态和毒理学风险评估提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
期刊最新文献
Solid-state fermentation with Pediococcus pentosaceus overcomes gelation limitations of chickpea protein for gel and extrudate Structural basis for the anti-aging effects of hydroxyproline-BCAA dipeptides: An integrated computational and experimental approach Editorial Board Improvement of surimi gel quality by lotus leaf and its aqueous extract: Insights from gel properties, digestive characteristics, and functional activities Longitudinal monitoring of global prevalence, genomic characterization and transmission routes of Salmonella Derby strains from food, humans and the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1