{"title":"Dual-function radiation sensitizers and bioreductive drugs: factors affecting cellular uptake and sensitizing efficiency in analogues of RSU 1069.","authors":"J Walling, I J Stratford, G E Adams, M A Stephens","doi":"10.1080/09553008814550961","DOIUrl":null,"url":null,"abstract":"<p><p>Alkyl aziridine analogues of the hypoxic cell radiosensitizer RSU 1069 have been synthesized and one of these, RB 7040, containing the tetramethyl substituted aziridine, is a more efficient sensitizer in vitro than RSU 1069 (Ahmed et al., 1986). The extent to which variation in drug uptake can influence the sensitizing efficiency of RSU 1069 and its analogues has been investigated by determining the cellular uptake of these weakly basic sensitizers as a function of the pH of the extracellular medium (pHe) over the range 5.4-8.4. Following exposure of V79 cells to these agents for 1 h at room temperature, the ratio of intra- to extracellular concentration (Ci/Ce) was near unity at pH 5.4. Increasing pHe to 8.4 resulted in no change in the ratio Ci/Ce for RSU 1069 (pKa = 6.04). In contrast, the values of Ci/Ce increased three-fold for RSU 1165 (pKa = 7.38) and eleven-fold for RB 7040 (pKa = 8.45). Radiosensitization by RSU 1069 showed little dependence on pHe over the range studied, whereas increasing pH caused an apparent increase in sensitizing efficiency of both RSU 1165 and RB 7040. However, when the enhancement ratios for sensitization were normalized to take account of the effect of extracellular pH on drug uptake, efficiency of sensitization was independent of pHe. This study suggests that changes in basicity (pKa) may have wider potential for therapeutic exploitation on the basis of selective tumour uptake for this type of agent.</p>","PeriodicalId":14254,"journal":{"name":"International journal of radiation biology and related studies in physics, chemistry, and medicine","volume":"53 4","pages":"641-9"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553008814550961","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology and related studies in physics, chemistry, and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553008814550961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Alkyl aziridine analogues of the hypoxic cell radiosensitizer RSU 1069 have been synthesized and one of these, RB 7040, containing the tetramethyl substituted aziridine, is a more efficient sensitizer in vitro than RSU 1069 (Ahmed et al., 1986). The extent to which variation in drug uptake can influence the sensitizing efficiency of RSU 1069 and its analogues has been investigated by determining the cellular uptake of these weakly basic sensitizers as a function of the pH of the extracellular medium (pHe) over the range 5.4-8.4. Following exposure of V79 cells to these agents for 1 h at room temperature, the ratio of intra- to extracellular concentration (Ci/Ce) was near unity at pH 5.4. Increasing pHe to 8.4 resulted in no change in the ratio Ci/Ce for RSU 1069 (pKa = 6.04). In contrast, the values of Ci/Ce increased three-fold for RSU 1165 (pKa = 7.38) and eleven-fold for RB 7040 (pKa = 8.45). Radiosensitization by RSU 1069 showed little dependence on pHe over the range studied, whereas increasing pH caused an apparent increase in sensitizing efficiency of both RSU 1165 and RB 7040. However, when the enhancement ratios for sensitization were normalized to take account of the effect of extracellular pH on drug uptake, efficiency of sensitization was independent of pHe. This study suggests that changes in basicity (pKa) may have wider potential for therapeutic exploitation on the basis of selective tumour uptake for this type of agent.