Circadian rhythms in the incidence of apoptotic cells and number of clonogenic cells in intestinal crypts after radiation using normal and reversed light conditions.

K Ijiri, C S Potten
{"title":"Circadian rhythms in the incidence of apoptotic cells and number of clonogenic cells in intestinal crypts after radiation using normal and reversed light conditions.","authors":"K Ijiri,&nbsp;C S Potten","doi":"10.1080/09553008814551091","DOIUrl":null,"url":null,"abstract":"<p><p>Variations in the number of radiation-induced morphologically dead or dying cells (apoptotic cells) in the crypts in the small intestine of the mouse have been studied throughout a 24-h period under a normal light regimen (light on, 07.00-19.00 h; light off, 19.00-07.00 h). A clear circadian rhythm was displayed in the apoptotic incidence 3 or 6 h after irradiation for each gamma-ray dose studied (range 0.14-9.0 Gy). The most prominent circadian rhythm was obtained after 0.5 Gy. The peak time of day for inducing apoptosis was 06.00-09.00 h, and the trough occurred at 18.00-21.00 h. Some mice were also transferred to a room with the light cycle reversed, and were irradiated on different days after the transfer. The apoptosis induced by 0.5 Gy or 9.0 Gy, or the number of surviving crypts (microcolonies) after 11.0 Gy or 13.0 Gy was examined. The transition point for reversal (i.e. the switch time from the normal-light pattern to the reversed-light pattern) of the circadian rhythm in apoptosis (after 0.5 Gy) occurred 7 days after the transfer and the rhythm was reversed by 14 days. The rhythm for crypt survival (i.e. for clonogenic cell radiosensitivity) was disturbed on 1 day and the transition point for reversal occurred 3 days after the transfer. The rhythm became reversed by 7 days. These observations are discussed in relation to the identity of clonogenic cells, (functional) stem cells, proliferating transit cells and the cells sensitive to small doses of radiation (i.e. hypersensitive cells) in the crypt.</p>","PeriodicalId":14254,"journal":{"name":"International journal of radiation biology and related studies in physics, chemistry, and medicine","volume":"53 5","pages":"717-27"},"PeriodicalIF":0.0000,"publicationDate":"1988-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553008814551091","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology and related studies in physics, chemistry, and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553008814551091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Variations in the number of radiation-induced morphologically dead or dying cells (apoptotic cells) in the crypts in the small intestine of the mouse have been studied throughout a 24-h period under a normal light regimen (light on, 07.00-19.00 h; light off, 19.00-07.00 h). A clear circadian rhythm was displayed in the apoptotic incidence 3 or 6 h after irradiation for each gamma-ray dose studied (range 0.14-9.0 Gy). The most prominent circadian rhythm was obtained after 0.5 Gy. The peak time of day for inducing apoptosis was 06.00-09.00 h, and the trough occurred at 18.00-21.00 h. Some mice were also transferred to a room with the light cycle reversed, and were irradiated on different days after the transfer. The apoptosis induced by 0.5 Gy or 9.0 Gy, or the number of surviving crypts (microcolonies) after 11.0 Gy or 13.0 Gy was examined. The transition point for reversal (i.e. the switch time from the normal-light pattern to the reversed-light pattern) of the circadian rhythm in apoptosis (after 0.5 Gy) occurred 7 days after the transfer and the rhythm was reversed by 14 days. The rhythm for crypt survival (i.e. for clonogenic cell radiosensitivity) was disturbed on 1 day and the transition point for reversal occurred 3 days after the transfer. The rhythm became reversed by 7 days. These observations are discussed in relation to the identity of clonogenic cells, (functional) stem cells, proliferating transit cells and the cells sensitive to small doses of radiation (i.e. hypersensitive cells) in the crypt.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在正常和反向光照条件下辐照后肠隐窝中凋亡细胞发生率和克隆细胞数量的昼夜节律
在正常光照条件下(光照,07.00-19.00小时;照射后3或6小时(范围0.14-9.0 Gy),细胞凋亡发生率有明显的昼夜节律。在0.5 Gy时,昼夜节律最为显著。诱导凋亡的高峰时间为06:00 - 09:00 h,低谷时间为18:00 -21.00 h。将部分小鼠转移到光周期相反的房间,在转移后的不同时间照射。观察0.5 Gy和9.0 Gy诱导的细胞凋亡情况,11.0 Gy和13.0 Gy诱导的细胞隐窝(微菌落)存活数量。细胞凋亡(0.5 Gy后)昼夜节律逆转的过渡点(即从正常光模式到逆光模式的切换时间)发生在转移后7天,节律逆转14天。隐窝存活的节律(即克隆细胞放射敏感性)在第1天被扰乱,逆转的过渡点发生在转移后3天。这一节奏在7天后逆转。这些观察结果讨论了克隆细胞、(功能性)干细胞、增殖转运细胞和对小剂量辐射敏感的细胞(即超敏感细胞)在隐窝中的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repair of potentially lethal damage in unfed plateau phase cultures of Ehrlich ascites tumour cells. I. Suspension cultures. Effects of ionizing radiation on the metabolism and longitudinal growth of cartilaginous embryonic chick tibiae in vitro. Effect of non-volatile scavengers of hydroxyl radicals on thymine radical formation induced by gamma-rays and ultrasound. Stochastic model of free radical yields in oriented DNA exposed to densely ionizing radiation at 77K. Induction of sister chromatid exchanges (SCE) in G0 lymphocytes by plutonium-238 alpha-particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1