Synergistic killing of Escherichia coli K-12 by UV (254 nm) and H2O2.

A C Leitão, R E Carvalho
{"title":"Synergistic killing of Escherichia coli K-12 by UV (254 nm) and H2O2.","authors":"A C Leitão,&nbsp;R E Carvalho","doi":"10.1080/09553008814552601","DOIUrl":null,"url":null,"abstract":"<p><p>Prior UV irradiation strongly increased the sensitivity to H2O2 of wild-type E. coli K-12 cells. This synergistic lethal interaction was also observed to a reduced extent in a polA mutant but was absent in uvrA, uvrArecA and xthA mutants. In a recA mutant an antagonist effect was observed. Prior H2O2 treatment did not sensitize the wild-type cells to UV irradiation. Alkaline and neutral sucrose gradient analysis, as well as DNA degradation studies, demonstrated that the synergism is due to the production of DNA double-strand breaks and a block of their repair. The possible mechanism of induction of such lesions is discussed.</p>","PeriodicalId":14254,"journal":{"name":"International journal of radiation biology and related studies in physics, chemistry, and medicine","volume":"53 3","pages":"477-88"},"PeriodicalIF":0.0000,"publicationDate":"1988-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553008814552601","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology and related studies in physics, chemistry, and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553008814552601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Prior UV irradiation strongly increased the sensitivity to H2O2 of wild-type E. coli K-12 cells. This synergistic lethal interaction was also observed to a reduced extent in a polA mutant but was absent in uvrA, uvrArecA and xthA mutants. In a recA mutant an antagonist effect was observed. Prior H2O2 treatment did not sensitize the wild-type cells to UV irradiation. Alkaline and neutral sucrose gradient analysis, as well as DNA degradation studies, demonstrated that the synergism is due to the production of DNA double-strand breaks and a block of their repair. The possible mechanism of induction of such lesions is discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外光(254 nm)与H2O2协同杀灭大肠杆菌K-12的研究。
先前的紫外线照射明显增加了野生型大肠杆菌K-12细胞对H2O2的敏感性。在polA突变体中也观察到这种协同致死相互作用在一定程度上有所减少,但在uvrA、uvrArecA和xthA突变体中不存在。在recA突变体中观察到拮抗剂效应。先前的H2O2处理没有使野生型细胞对紫外线照射敏感。碱性和中性蔗糖梯度分析以及DNA降解研究表明,协同作用是由于DNA双链断裂的产生和修复的阻断。讨论了诱导这种病变的可能机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repair of potentially lethal damage in unfed plateau phase cultures of Ehrlich ascites tumour cells. I. Suspension cultures. Effects of ionizing radiation on the metabolism and longitudinal growth of cartilaginous embryonic chick tibiae in vitro. Effect of non-volatile scavengers of hydroxyl radicals on thymine radical formation induced by gamma-rays and ultrasound. Stochastic model of free radical yields in oriented DNA exposed to densely ionizing radiation at 77K. Induction of sister chromatid exchanges (SCE) in G0 lymphocytes by plutonium-238 alpha-particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1