In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

A Chatterjee, A K Bhattacharya
{"title":"In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.","authors":"A Chatterjee,&nbsp;A K Bhattacharya","doi":"10.1080/09553008814551331","DOIUrl":null,"url":null,"abstract":"<p><p>The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.</p>","PeriodicalId":14254,"journal":{"name":"International journal of radiation biology and related studies in physics, chemistry, and medicine","volume":"53 6","pages":"977-82"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09553008814551331","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology and related studies in physics, chemistry, and medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553008814551331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外和γ辐照大肠杆菌体内腺苷酸环化酶活性。
以大肠杆菌B/r全细胞将[14C]腺嘌呤掺入环AMP片段作为体内腺苷酸环化酶活性的衡量指标。60Co γ射线或杀菌灯紫外线照射可显著抑制细胞的这种活性,提示抑制环AMP的合成。低剂量(50-100 Gy) γ射线照射后的细胞孵育,体内腺苷酸环化酶活性显著增加,而高剂量(150 Gy及以上)照射后的细胞体内腺苷酸环化酶活性无显著变化。用紫外光(54 J m-2)照射后的细胞进行暗孵育,酶活性恢复到未照射细胞的水平。因此,紫外线和γ照射诱导的l -阿拉伯糖异构酶的分解代谢抑制似乎是由于照射细胞中环AMP合成的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repair of potentially lethal damage in unfed plateau phase cultures of Ehrlich ascites tumour cells. I. Suspension cultures. Effects of ionizing radiation on the metabolism and longitudinal growth of cartilaginous embryonic chick tibiae in vitro. Effect of non-volatile scavengers of hydroxyl radicals on thymine radical formation induced by gamma-rays and ultrasound. Stochastic model of free radical yields in oriented DNA exposed to densely ionizing radiation at 77K. Induction of sister chromatid exchanges (SCE) in G0 lymphocytes by plutonium-238 alpha-particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1