{"title":"Regeneration of the frog optic nerve. Comparisons with development.","authors":"D J Stelzner, R C Bohn, J A Strauss","doi":"10.1007/BF02842939","DOIUrl":null,"url":null,"abstract":"<p><p>Developing and regenerating frog optic axons grow within optic pathways and form connections only with optic targets. However, unlike normal development, many regenerating optic axons in the adult frog are misrouted within optic pathways, including axons that grow into the opposite retina. Many of the axons misrouted during regeneration appear to be collaterals of axons that grow in normal directions. Ganglion cell loss of up to 60% occurs after optic nerve damage, beginning prior to reinnervation of optic targets. Massive axonal collateralization also takes place near the point of nerve damage, causing the normal order found within the nerve to be lost. Collaterals are eliminated as selective reinnervation is completed, and the smaller complement of optic cell axons remaining after regeneration form an expanded projection within optic targets. Evidence is reviewed that suggests that factors involved in axonal guidance and target recognition during development remain intact in the adult frog brain. Additional conditions resulting from nerve injury causes axonal guidance to be less successful during regeneration.</p>","PeriodicalId":77753,"journal":{"name":"Neurochemical pathology","volume":"5 3","pages":"255-88"},"PeriodicalIF":0.0000,"publicationDate":"1986-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02842939","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02842939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Developing and regenerating frog optic axons grow within optic pathways and form connections only with optic targets. However, unlike normal development, many regenerating optic axons in the adult frog are misrouted within optic pathways, including axons that grow into the opposite retina. Many of the axons misrouted during regeneration appear to be collaterals of axons that grow in normal directions. Ganglion cell loss of up to 60% occurs after optic nerve damage, beginning prior to reinnervation of optic targets. Massive axonal collateralization also takes place near the point of nerve damage, causing the normal order found within the nerve to be lost. Collaterals are eliminated as selective reinnervation is completed, and the smaller complement of optic cell axons remaining after regeneration form an expanded projection within optic targets. Evidence is reviewed that suggests that factors involved in axonal guidance and target recognition during development remain intact in the adult frog brain. Additional conditions resulting from nerve injury causes axonal guidance to be less successful during regeneration.