{"title":"Shaping Li Deposits from Wild Dendrites to Regular Crystals via the Ferroelectric Effect","authors":"Yanpeng Guo, Renyan Wang, Can Cui, Rundi Xiong, Yaqing Wei, Tianyou Zhai, Huiqiao Li*","doi":"10.1021/acs.nanolett.0c03206","DOIUrl":null,"url":null,"abstract":"<p >Manipulating the Li plating behavior remains a challenging task toward Li-based high-energy batteries. Generally, the Li plating process is kinetically controlled by ion transport, concentration gradient, local electric field, etc. A myriad of strategies have been developed for homogenizing the kinetics; however, such kinetics-controlled Li plating nature is barely changed. Herein, a ferroelectric substrate comprised of homogeneously distributed BaTiO<sub>3</sub> was deployed and the Li plating behavior was transferred from a kinetic-controlled to a thermodynamic-preferred mode via ferroelectric effect. Such Li deposits with uniform hexagonal and cubic shapes are highly in accord with the thermodynamic principle where the body-centered cubic Li is apt to expose more (110) facets as possible to maximally minimize its surface energy. The mechanism was later confirmed due to the spontaneous polarization of BTO particles trigged by an applied electric field. The instantly generated reverse polarized field and charged ends not only neutralized the electric field but also leveled the ion distribution at the interface.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"20 10","pages":"7680–7687"},"PeriodicalIF":9.6000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.nanolett.0c03206","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.0c03206","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22
Abstract
Manipulating the Li plating behavior remains a challenging task toward Li-based high-energy batteries. Generally, the Li plating process is kinetically controlled by ion transport, concentration gradient, local electric field, etc. A myriad of strategies have been developed for homogenizing the kinetics; however, such kinetics-controlled Li plating nature is barely changed. Herein, a ferroelectric substrate comprised of homogeneously distributed BaTiO3 was deployed and the Li plating behavior was transferred from a kinetic-controlled to a thermodynamic-preferred mode via ferroelectric effect. Such Li deposits with uniform hexagonal and cubic shapes are highly in accord with the thermodynamic principle where the body-centered cubic Li is apt to expose more (110) facets as possible to maximally minimize its surface energy. The mechanism was later confirmed due to the spontaneous polarization of BTO particles trigged by an applied electric field. The instantly generated reverse polarized field and charged ends not only neutralized the electric field but also leveled the ion distribution at the interface.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.