A comparison of nano-celluloses prepared with various terms of time and sulfuric acid concentration from bagasse derived cellulose: Physicochemical characteristics and process optimization
Nabiha I. Abdo , Yasser M. Tufik , Sohier M. Abobakr
{"title":"A comparison of nano-celluloses prepared with various terms of time and sulfuric acid concentration from bagasse derived cellulose: Physicochemical characteristics and process optimization","authors":"Nabiha I. Abdo , Yasser M. Tufik , Sohier M. Abobakr","doi":"10.1016/j.crgsc.2023.100365","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose in nano-meter domain or aka nano-cellulose (NC) has enticed much attention from researchers. Segregated cellulose from sugarcane bagasse (SCB) was used in this study, and then hydrolyzed with 40, 50 and 60% sulfuric acid at 45 °C for 90, 30, and 20 min. The impact of the different treatment conditions was evaluated regarding nano-product yields and morphology aspects. The current study discusses the surface morphology, structural and elemental properties of nano-celluloses (NCs). Morphological; X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and elemental analysis; energy dispersive x-ray diffraction (EDX). Morphological characterization showed the figuration of stick-shaped rods and bundles of NCs with size in the ambit of about 34–49 nm. Elemental analysis (EDX) showed multiple elements in NCs with other major compositions. X-ray diffraction appeared that NCs have diverse crystallinity indices at different nanoscales. We have achieved the main challenges based on; The high concentration of acid used, the short reaction time needed and the smallest size using a 60% concentration of acid in a time of 20 min compared to other concentrations used in this study. Extracted NCs presupposed to have a high potency in many applications. Therefore, NCs are considered a modified biomass with great potential to meet global energy demand and encourage environmental sustainability.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"6 ","pages":"Article 100365"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086523000115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose in nano-meter domain or aka nano-cellulose (NC) has enticed much attention from researchers. Segregated cellulose from sugarcane bagasse (SCB) was used in this study, and then hydrolyzed with 40, 50 and 60% sulfuric acid at 45 °C for 90, 30, and 20 min. The impact of the different treatment conditions was evaluated regarding nano-product yields and morphology aspects. The current study discusses the surface morphology, structural and elemental properties of nano-celluloses (NCs). Morphological; X-ray diffraction (XRD), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and elemental analysis; energy dispersive x-ray diffraction (EDX). Morphological characterization showed the figuration of stick-shaped rods and bundles of NCs with size in the ambit of about 34–49 nm. Elemental analysis (EDX) showed multiple elements in NCs with other major compositions. X-ray diffraction appeared that NCs have diverse crystallinity indices at different nanoscales. We have achieved the main challenges based on; The high concentration of acid used, the short reaction time needed and the smallest size using a 60% concentration of acid in a time of 20 min compared to other concentrations used in this study. Extracted NCs presupposed to have a high potency in many applications. Therefore, NCs are considered a modified biomass with great potential to meet global energy demand and encourage environmental sustainability.