Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review

IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Progress in Solid State Chemistry Pub Date : 2022-12-01 DOI:10.1016/j.progsolidstchem.2022.100380
Tamanna Harihar Panigrahi , Satya Ranjan Sahoo , Gajiram Murmu , Dipak Maity , Sumit Saha
{"title":"Current challenges and developments of inorganic/organic materials for the abatement of toxic nitrogen oxides (NOx) – A critical review","authors":"Tamanna Harihar Panigrahi ,&nbsp;Satya Ranjan Sahoo ,&nbsp;Gajiram Murmu ,&nbsp;Dipak Maity ,&nbsp;Sumit Saha","doi":"10.1016/j.progsolidstchem.2022.100380","DOIUrl":null,"url":null,"abstract":"<div><p><span>Nitrogen oxides<span> (NOx) are toxic gases produced from various anthropogenic and natural sources. It causes acid rain, ozone depletion, photochemical smog, corrosion of buildings, and various health hazards. The removal of these toxic gases is vital to safeguard the health of living organisms and the air quality on the earth. These can be done by complying with government regulations and using efficient gas capture techniques in industries. However, the challenge remains in arresting these toxic gases with high efficiency, selectivity, and sustainability using low-cost materials. The present review summarizes the recent advances in the detention and diminution of NOx (NO</span></span><sub>2</sub><span>, NO, and N</span><sub>2</sub>O) by inorganic and organic materials. We have discussed different processes for capturing nitrogen dioxides (NO<sub>2</sub><span><span>) using various materials namely metal-organic framework, activated carbon, functionalized metal oxides, transition metals, and </span>zeolites<span>. Moreover, a variety of materials such as ionic liquid<span>, deep eutectic liquid, and selective catalytic reduction-based materials, including metal oxides and zeolites, are described for the abatement of nitric oxides (NO). Finally, the methods of capturing nitrous oxides (N</span></span></span><sub>2</sub>O) are deliberated, including direct and photocatalytic decomposition, followed by various adsorbent materials. Overall, different materials/methods and mechanisms for NOx detention and/or abatement are well presented and their efficiency is compared in this review. The present article also showcases all the examples of recently developed high-performance materials for efficient NOx capturing/abating.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"68 ","pages":"Article 100380"},"PeriodicalIF":9.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678622000346","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 7

Abstract

Nitrogen oxides (NOx) are toxic gases produced from various anthropogenic and natural sources. It causes acid rain, ozone depletion, photochemical smog, corrosion of buildings, and various health hazards. The removal of these toxic gases is vital to safeguard the health of living organisms and the air quality on the earth. These can be done by complying with government regulations and using efficient gas capture techniques in industries. However, the challenge remains in arresting these toxic gases with high efficiency, selectivity, and sustainability using low-cost materials. The present review summarizes the recent advances in the detention and diminution of NOx (NO2, NO, and N2O) by inorganic and organic materials. We have discussed different processes for capturing nitrogen dioxides (NO2) using various materials namely metal-organic framework, activated carbon, functionalized metal oxides, transition metals, and zeolites. Moreover, a variety of materials such as ionic liquid, deep eutectic liquid, and selective catalytic reduction-based materials, including metal oxides and zeolites, are described for the abatement of nitric oxides (NO). Finally, the methods of capturing nitrous oxides (N2O) are deliberated, including direct and photocatalytic decomposition, followed by various adsorbent materials. Overall, different materials/methods and mechanisms for NOx detention and/or abatement are well presented and their efficiency is compared in this review. The present article also showcases all the examples of recently developed high-performance materials for efficient NOx capturing/abating.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无机/有机材料用于减少有毒氮氧化物(NOx)的当前挑战和发展-综述
氮氧化物(NOx)是由各种人为和自然来源产生的有毒气体。它造成酸雨、臭氧损耗、光化学烟雾、建筑物腐蚀和各种健康危害。清除这些有毒气体对保护生物的健康和地球上的空气质量至关重要。这些可以通过遵守政府法规和在工业中使用有效的气体捕获技术来实现。然而,利用低成本材料高效、选择性和可持续性地捕获这些有毒气体仍然是一个挑战。本文综述了无机材料和有机材料在滞留和减少NOx (NO2、NO和N2O)方面的最新进展。我们讨论了利用不同材料捕获二氧化氮(NO2)的不同方法,这些材料包括金属有机骨架、活性炭、功能化金属氧化物、过渡金属和沸石。此外,各种材料,如离子液体、深度共晶液体和选择性催化还原材料,包括金属氧化物和沸石,都被描述为减少一氧化氮(NO)。最后,讨论了捕获氧化亚氮(N2O)的方法,包括直接分解和光催化分解,然后是各种吸附材料。总的来说,不同的材料/方法和机制的氮氧化物滞留和/或减排很好地提出,并在这篇综述中比较了它们的效率。本文还展示了最近开发的用于高效捕获/减少氮氧化物的高性能材料的所有示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Solid State Chemistry
Progress in Solid State Chemistry 化学-无机化学与核化学
CiteScore
14.10
自引率
3.30%
发文量
12
期刊介绍: Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.
期刊最新文献
Editorial Board Boosting the phosphorus uptake of La2(CO3)3·8H2O based adsorbents via sodium addition: Relationship between crystal structure and adsorption capacity Investigation of Sr-substituted Ba1-xSrx(Zn1/3Nb2/3)O3 complex perovskites: Structural, electrical and electrochemical properties New solid solutions with the R-type hexaferrite structure, BaFe4-xMxM’2O11 (M = In, Sc; M’ = Ti, Sn) Novel Mn5+-activated Ba2TiO4 phosphor emitting in the second near-infrared biological window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1