Molecular luminescence studies of flavins. II. Interactions involving the excited states.

P S Song, T A Moore, W E Kurtin
{"title":"Molecular luminescence studies of flavins. II. Interactions involving the excited states.","authors":"P S Song, T A Moore, W E Kurtin","doi":"10.1515/znb-1972-0901","DOIUrl":null,"url":null,"abstract":"The effects of experimental geometry on the theoretical polarizations of the S1 ← S0 and S2 ← S0 bands of π→π* type in riboflavin have been examined. Polarizations of these two bands are characterized by an angle between them in the range of 20—28° and are relatively insensitive to the input geometry. Thus the predicted polarizations are generally in agreement with fluorescence polarization spectrum of riboflavin at 77°K. Alloxazine forms a strong complex with KI, and the fluorescence and phosphorescence from the charge transfer states have been characterized by means of luminescence and photoselection measurements. Riboflavin did not form a strong complex with KI, but it forms aggregates (dimer) more readily than alloxazine. The excited states of flavins can be populated by the weak dipole-dipole coupling mechanism of energy transfer from 1La states of indoles to the S2 state of flavins. The measured critical distances estimated from the fluorescence depolarization experiments range from 31 Å for indole to 40 A for indole-2-carboxylic acid in glycerol-methanol mixture (9:1) at 263°K.","PeriodicalId":78857,"journal":{"name":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","volume":"27 9","pages":"1011-5"},"PeriodicalIF":0.0000,"publicationDate":"1972-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/znb-1972-0901","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Naturforschung. Teil B. Anorganische Chemie, organische Chemie, Biochemie, Biophysik, Biologie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/znb-1972-0901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The effects of experimental geometry on the theoretical polarizations of the S1 ← S0 and S2 ← S0 bands of π→π* type in riboflavin have been examined. Polarizations of these two bands are characterized by an angle between them in the range of 20—28° and are relatively insensitive to the input geometry. Thus the predicted polarizations are generally in agreement with fluorescence polarization spectrum of riboflavin at 77°K. Alloxazine forms a strong complex with KI, and the fluorescence and phosphorescence from the charge transfer states have been characterized by means of luminescence and photoselection measurements. Riboflavin did not form a strong complex with KI, but it forms aggregates (dimer) more readily than alloxazine. The excited states of flavins can be populated by the weak dipole-dipole coupling mechanism of energy transfer from 1La states of indoles to the S2 state of flavins. The measured critical distances estimated from the fluorescence depolarization experiments range from 31 Å for indole to 40 A for indole-2-carboxylic acid in glycerol-methanol mixture (9:1) at 263°K.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄素的分子发光研究。2涉及激发态的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[IR, Raman, 1 H-NMR spectra and acidity constants of the cytostatic Hadacidin and its mono alkali salts]. [UV-dimerization of 1,3-dimethyluracil in ice-matrix]. [Structure determination of dimeric 1,3-dimethyl-uracils by 1 H-NMR-spectroscopy]. [Kinetic and chemical study of succinyl papain]. Loss of biological activity of bacteriophage 2C and degradation of its DNA in storage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1