Riku Kawasaki Ph. D. , Hidetoshi Hirano , Keita Yamana , Hinata Isozaki , Shogo Kawamura , Yu Sanada Ph. D. , Kaori Bando , Anri Tabata , Kouhei Yoshikawa , Hideki Azuma Ph. D. , Takushi Takata Ph. D. , Hiroki Tanaka Ph.D. , Yoshinori Sakurai Ph. D. , Minoru Suzuki M. D. , Naoki Tarutani Ph. D. , Kiyofumi Katagiri Ph. D. , Shin-ichi Sawada Ph. D. , Yoshihiro Sasaki Ph. D. , Kazunari Akiyoshi Ph. D. , Takeshi Nagasaki Ph. D. , Atsushi Ikeda Ph. D.
{"title":"Carborane bearing pullulan nanogel-boron oxide nanoparticle hybrid for boron neutron capture therapy","authors":"Riku Kawasaki Ph. D. , Hidetoshi Hirano , Keita Yamana , Hinata Isozaki , Shogo Kawamura , Yu Sanada Ph. D. , Kaori Bando , Anri Tabata , Kouhei Yoshikawa , Hideki Azuma Ph. D. , Takushi Takata Ph. D. , Hiroki Tanaka Ph.D. , Yoshinori Sakurai Ph. D. , Minoru Suzuki M. D. , Naoki Tarutani Ph. D. , Kiyofumi Katagiri Ph. D. , Shin-ichi Sawada Ph. D. , Yoshihiro Sasaki Ph. D. , Kazunari Akiyoshi Ph. D. , Takeshi Nagasaki Ph. D. , Atsushi Ikeda Ph. D.","doi":"10.1016/j.nano.2023.102659","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Boron neutron capture therapy<span><span> shows is a promising approach to cancer therapy, but the delivery of effective boron agents is challenging. To address the requirements for efficient boron delivery, we used a hybrid nanoparticle comprising a carborane = bearing </span>pullulan </span></span>nanogel and hydrophobized boron oxide nanoparticle (HBNGs) enabling the preparation of highly concentrated boron agents for efficient delivery. The HBNGs showed better anti-cancer effects on Colon26 cells than a clinically boron agent, L-BPA/fructose complex, by enhancing the accumulation and retention amount of the boron agent within cells </span><em>in vitro</em><span>. The accumulation of HBNGs in tumors, due to the enhanced permeation<span> and retention effect, enabled the delivery of boron agents with high tumor selectivity, meeting clinical demands. Intravenous injection<span><span> of boron neutron capture therapy (BNCT) using HBNGs decreased tumor volume without significant body weight loss, and no </span>regrowth of tumor was observed three months after complete regression. The therapeutic efficacy of HBNGs was better than that of L-BPA/fructose complex. BNCT with HBNGs is a promising approach to cancer therapeutics.</span></span></span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"49 ","pages":"Article 102659"},"PeriodicalIF":4.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963423000102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Boron neutron capture therapy shows is a promising approach to cancer therapy, but the delivery of effective boron agents is challenging. To address the requirements for efficient boron delivery, we used a hybrid nanoparticle comprising a carborane = bearing pullulan nanogel and hydrophobized boron oxide nanoparticle (HBNGs) enabling the preparation of highly concentrated boron agents for efficient delivery. The HBNGs showed better anti-cancer effects on Colon26 cells than a clinically boron agent, L-BPA/fructose complex, by enhancing the accumulation and retention amount of the boron agent within cells in vitro. The accumulation of HBNGs in tumors, due to the enhanced permeation and retention effect, enabled the delivery of boron agents with high tumor selectivity, meeting clinical demands. Intravenous injection of boron neutron capture therapy (BNCT) using HBNGs decreased tumor volume without significant body weight loss, and no regrowth of tumor was observed three months after complete regression. The therapeutic efficacy of HBNGs was better than that of L-BPA/fructose complex. BNCT with HBNGs is a promising approach to cancer therapeutics.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.