Qianyu Zhang PhD , Sai Li BS , Wen Wu PhD , Xuefeng Xia PhD , Jinqiang Zhang PhD
{"title":"PASylation improves pharmacokinetic of liposomes and attenuates anti-PEG IgM production: An alternative to PEGylation","authors":"Qianyu Zhang PhD , Sai Li BS , Wen Wu PhD , Xuefeng Xia PhD , Jinqiang Zhang PhD","doi":"10.1016/j.nano.2022.102622","DOIUrl":null,"url":null,"abstract":"<div><p>PASylation, which was recently reported as the conjugation of pharmacologically active compounds with polypeptide sequences mainly made of proline, alanine and serine, has been proposed as an alternative to PEGylation. In this study, we designed PAS-modified liposomes (PASylated liposomes) and studied the effect of the incorporation of PAS-lipid on the stability and pharmacokinetic properties of liposomes, and compared them both <em>in vitro</em> and <em>in vivo</em> to PEGylated liposomes. Results showed that PASylated liposomes modified with single-chained PAS-lipid C<sub>16</sub>-(PA<sub>3</sub>)<sub>7</sub> (SC-PAS-Lip) showed comparable storage and serum stability to PEGylated liposomes (PEG-Lip), and a significantly decreased macrophage uptake compared with unmodified liposomes. SC-PAS-Lip displayed long circulating pharmacokinetic profile which was not impacted by the repeated administration of liposomes, and they were less likely to induce the production of anti-PEG IgM compared with PEGylated liposomes, presenting PASylation as an alternative liposome modification strategy to PEGylation.</p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"47 ","pages":"Article 102622"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001083","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
PASylation, which was recently reported as the conjugation of pharmacologically active compounds with polypeptide sequences mainly made of proline, alanine and serine, has been proposed as an alternative to PEGylation. In this study, we designed PAS-modified liposomes (PASylated liposomes) and studied the effect of the incorporation of PAS-lipid on the stability and pharmacokinetic properties of liposomes, and compared them both in vitro and in vivo to PEGylated liposomes. Results showed that PASylated liposomes modified with single-chained PAS-lipid C16-(PA3)7 (SC-PAS-Lip) showed comparable storage and serum stability to PEGylated liposomes (PEG-Lip), and a significantly decreased macrophage uptake compared with unmodified liposomes. SC-PAS-Lip displayed long circulating pharmacokinetic profile which was not impacted by the repeated administration of liposomes, and they were less likely to induce the production of anti-PEG IgM compared with PEGylated liposomes, presenting PASylation as an alternative liposome modification strategy to PEGylation.
期刊介绍:
Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.