Han Xu , Hai-Liang Song , Rajendra Prasad Singh , Yu-Li Yang , Jia-Ying Xu , Xiao-Li Yang
{"title":"Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell","authors":"Han Xu , Hai-Liang Song , Rajendra Prasad Singh , Yu-Li Yang , Jia-Ying Xu , Xiao-Li Yang","doi":"10.1016/j.biortech.2020.124285","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) was built to demonstrate that integration of MFC can enhance antibiotics (sulfadiazine (SDZ) and ciprofloxacin (CIP)) removal in CWs and control CH<sub>4</sub> emissions. Better COD and antibiotics removal performance was obtained in CW-MFC. Notably, both reactors can remove more than 90.00% of CIP. A decline in methane fluxes (by 15.29%) was also observed in CW-MFC compared with CW. The presence of <em>Acorus tatarinowii</em> had no obvious effect on antibiotics removal but the application of manganese ore substrate reduced methane emissions. Further study showed that <em>Proteobacteria</em> was enriched on the Mn substrate anode and the relative abundance of <em>Methanothrix</em> was declined. The results suggested that suppression of methanogenesis may be contributed to a low methane flux in CW-MFC. This study will facilitate the application of CW-MFC to treat antibiotics wastewater and control the ecological risks of greenhouse gas emissions.</p></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"320 ","pages":"Article 124285"},"PeriodicalIF":9.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.biortech.2020.124285","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852420315595","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 39
Abstract
In this study, a microbial fuel cell coupled with constructed wetland (CW-MFC) was built to demonstrate that integration of MFC can enhance antibiotics (sulfadiazine (SDZ) and ciprofloxacin (CIP)) removal in CWs and control CH4 emissions. Better COD and antibiotics removal performance was obtained in CW-MFC. Notably, both reactors can remove more than 90.00% of CIP. A decline in methane fluxes (by 15.29%) was also observed in CW-MFC compared with CW. The presence of Acorus tatarinowii had no obvious effect on antibiotics removal but the application of manganese ore substrate reduced methane emissions. Further study showed that Proteobacteria was enriched on the Mn substrate anode and the relative abundance of Methanothrix was declined. The results suggested that suppression of methanogenesis may be contributed to a low methane flux in CW-MFC. This study will facilitate the application of CW-MFC to treat antibiotics wastewater and control the ecological risks of greenhouse gas emissions.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.