{"title":"An investigation of lipase catalysed sonochemical synthesis: A review","authors":"Sneha R. Bansode, Virendra K. Rathod","doi":"10.1016/j.ultsonch.2017.02.028","DOIUrl":null,"url":null,"abstract":"<div><p>Ultrasonic irradiation has recently gained attention of researchers for its process intensification in numerous reactions. Earlier ultrasound was known for its application either to deactivate enzyme activity or to disrupt the cell. However, in recent years, practice of ultrasonic irradiation began to emerge as a tool for the activation of the enzymes under mild frequency conditions. The incorporation of ultrasound in any of enzymatic reactions not only increases yield but also accelerates the rate of reaction in the presence of mild conditions with better yield and less side-products. To attain maximum yield, it is crucial to understand the mechanism and effect of sonication on reaction especially for the lipase enzyme. Thus, the influence of ultrasound irradiation on reaction yield for different parameters including temperature, enzyme concentration, mole ratio of substrates, solvents ultrasonic frequency and power was reviewed and discussed. The physical effect of cavitation determined by bubble dynamics and rate of reaction through kinetic modelling also needs to be assessed for complete investigation and scale up of synthesis. Thus, prudish utilisation of ultrasound for enzymatic synthesis can serve better future for sustainable and green chemistry.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"38 ","pages":"Pages 503-529"},"PeriodicalIF":9.7000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ultsonch.2017.02.028","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417717300809","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 62
Abstract
Ultrasonic irradiation has recently gained attention of researchers for its process intensification in numerous reactions. Earlier ultrasound was known for its application either to deactivate enzyme activity or to disrupt the cell. However, in recent years, practice of ultrasonic irradiation began to emerge as a tool for the activation of the enzymes under mild frequency conditions. The incorporation of ultrasound in any of enzymatic reactions not only increases yield but also accelerates the rate of reaction in the presence of mild conditions with better yield and less side-products. To attain maximum yield, it is crucial to understand the mechanism and effect of sonication on reaction especially for the lipase enzyme. Thus, the influence of ultrasound irradiation on reaction yield for different parameters including temperature, enzyme concentration, mole ratio of substrates, solvents ultrasonic frequency and power was reviewed and discussed. The physical effect of cavitation determined by bubble dynamics and rate of reaction through kinetic modelling also needs to be assessed for complete investigation and scale up of synthesis. Thus, prudish utilisation of ultrasound for enzymatic synthesis can serve better future for sustainable and green chemistry.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.