Zenghui Liu , Hua Wu , Yi Yuan , Hongyan Wan , Zeng Luo , Pan Gao , Jian Zhuang , Jie Zhang , Nan Zhang , Jingrui Li , Yage Zhan , Wei Ren , Zuo-Guang Ye
{"title":"Recent progress in bismuth-based high Curie temperature piezo-/ferroelectric perovskites for electromechanical transduction applications","authors":"Zenghui Liu , Hua Wu , Yi Yuan , Hongyan Wan , Zeng Luo , Pan Gao , Jian Zhuang , Jie Zhang , Nan Zhang , Jingrui Li , Yage Zhan , Wei Ren , Zuo-Guang Ye","doi":"10.1016/j.cossms.2022.101016","DOIUrl":null,"url":null,"abstract":"<div><p>Piezo-/ferroelectric materials with high Curie temperature (<em>T</em><sub>C</sub>) are widely needed in sensors, actuators and transducers which can be used for <em>high-temperature</em> (HT) electromechanical transduction applications. In recent years, remarkable progress has been made in <em>bismuth-based piezo-/ferroelectric perovskite materials</em> (BPPs). In this article, recent progress in high <em>T</em><sub>C</sub> BPPs is reviewed. This review starts with an introduction to HT piezoelectrics and their applications. A detailed survey is then carried out on <em>bismuth-based perovskites</em> (BPs) with high <em>T</em><sub>C</sub>. Material synthesis, doping effects and chemical modifications of the related solid solutions are examined. Based on this analysis, the structure–property relationship of these materials is established. In addition, recent developments of BPPs for HT electromechanical transduction applications are presented and evaluated. Lastly, some main existing issues are analyzed and their possible solutions are proposed. This article provides a comprehensive overview of the research and development of BPPs and offers some prospects towards making these materials a viable resource for the design and fabrication of electromechanical transducers with unique specifications, especially, high temperature, high frequency and high power, for a wide range of technological applications.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 5","pages":"Article 101016"},"PeriodicalIF":12.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000365","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 15
Abstract
Piezo-/ferroelectric materials with high Curie temperature (TC) are widely needed in sensors, actuators and transducers which can be used for high-temperature (HT) electromechanical transduction applications. In recent years, remarkable progress has been made in bismuth-based piezo-/ferroelectric perovskite materials (BPPs). In this article, recent progress in high TC BPPs is reviewed. This review starts with an introduction to HT piezoelectrics and their applications. A detailed survey is then carried out on bismuth-based perovskites (BPs) with high TC. Material synthesis, doping effects and chemical modifications of the related solid solutions are examined. Based on this analysis, the structure–property relationship of these materials is established. In addition, recent developments of BPPs for HT electromechanical transduction applications are presented and evaluated. Lastly, some main existing issues are analyzed and their possible solutions are proposed. This article provides a comprehensive overview of the research and development of BPPs and offers some prospects towards making these materials a viable resource for the design and fabrication of electromechanical transducers with unique specifications, especially, high temperature, high frequency and high power, for a wide range of technological applications.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field