Polymer-based triboelectric nanogenerators: Materials, characterization, and applications

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2023-09-01 DOI:10.1016/j.progpolymsci.2023.101723
Mina Shanbedi , Haleh Ardebili , Alamgir Karim
{"title":"Polymer-based triboelectric nanogenerators: Materials, characterization, and applications","authors":"Mina Shanbedi ,&nbsp;Haleh Ardebili ,&nbsp;Alamgir Karim","doi":"10.1016/j.progpolymsci.2023.101723","DOIUrl":null,"url":null,"abstract":"<div><p>Triboelectric nanogenerators (TENGs), a nascent field in energy conversion technologies, provide a novel approach to producing electrical energy from mechanical motion in the surrounding environment.Polymers play a key role in the functioning of TENGs through their exceptional triboelectric properties, with most triboelectric active materials being polymeric with negative affinity potential. Since there are many scientific issues that are not well understood yet regarding the working mechanism and fundamental issues regarding the role of polymers in TENGs, this review covers TENG fundamentals and effects of environmental parameters and provides a deep analytical analysis of important literature studies of TENGs. Although TENGs generate high voltage, their current generation is usually in the microamp range. Modifying polymer dielectric materials<span><span> has been much investigated to enhance the output performance of TENGs. This article provides a comprehensive review of various polymer modification categories and associated performance enhancement with an analysis and comparison of research results to help grasp the big picture on the role of polymer modification on TENG performance. Specifically, the source of triboelectrification and updated knowledge about their working principle, and the quantified comparison of triboelectric material are discussed. Then physical nano and microstructure and the effect of TENG material shape on the output are brought into the discussion. Equally, the important role of chemical modification of triboelectric active polymer by way of categorization of methods and their effect on electricity generation is put under focus. In order to enhance the triboelectric negativity of polymer properties, it is useful to introduce chemical groups with high negativity, such as halogens. This can be achieved through several methods, including using a sulfur backbone or casting fluorinated self-assembly monolayers (SAMs), and the impact on TENGs' performance is explored. Furthermore, the addition of fillers to polymers is a proven technique for increasing their </span>dielectric constant, which is emphasized as particularly significant.</span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"144 ","pages":"Article 101723"},"PeriodicalIF":26.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023000771","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Triboelectric nanogenerators (TENGs), a nascent field in energy conversion technologies, provide a novel approach to producing electrical energy from mechanical motion in the surrounding environment.Polymers play a key role in the functioning of TENGs through their exceptional triboelectric properties, with most triboelectric active materials being polymeric with negative affinity potential. Since there are many scientific issues that are not well understood yet regarding the working mechanism and fundamental issues regarding the role of polymers in TENGs, this review covers TENG fundamentals and effects of environmental parameters and provides a deep analytical analysis of important literature studies of TENGs. Although TENGs generate high voltage, their current generation is usually in the microamp range. Modifying polymer dielectric materials has been much investigated to enhance the output performance of TENGs. This article provides a comprehensive review of various polymer modification categories and associated performance enhancement with an analysis and comparison of research results to help grasp the big picture on the role of polymer modification on TENG performance. Specifically, the source of triboelectrification and updated knowledge about their working principle, and the quantified comparison of triboelectric material are discussed. Then physical nano and microstructure and the effect of TENG material shape on the output are brought into the discussion. Equally, the important role of chemical modification of triboelectric active polymer by way of categorization of methods and their effect on electricity generation is put under focus. In order to enhance the triboelectric negativity of polymer properties, it is useful to introduce chemical groups with high negativity, such as halogens. This can be achieved through several methods, including using a sulfur backbone or casting fluorinated self-assembly monolayers (SAMs), and the impact on TENGs' performance is explored. Furthermore, the addition of fillers to polymers is a proven technique for increasing their dielectric constant, which is emphasized as particularly significant.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物基摩擦纳米发电机:材料、表征和应用
摩擦电纳米发电机(TENGs)是能量转换技术的一个新兴领域,它提供了一种从周围环境的机械运动中产生电能的新方法。聚合物通过其特殊的摩擦电特性在teng的功能中起着关键作用,大多数摩擦电活性材料是具有负亲和电位的聚合物。鉴于聚合物在TENG中的作用机理和基础问题等科学问题尚不清楚,本文综述了TENG的基本原理和环境参数的影响,并对重要的文献研究进行了深入的分析分析。虽然teng产生高电压,但它们的电流产生通常在微安范围内。人们对聚合物介质材料进行改性以提高teng的输出性能进行了大量研究。本文全面综述了各种聚合物改性类别和相关的性能增强,并对研究结果进行了分析和比较,以帮助掌握聚合物改性对TENG性能的作用。具体地说,讨论了摩擦起电的来源及其工作原理的最新知识,以及摩擦起电材料的量化比较。然后讨论了物理纳米和微观结构以及材料形状对输出的影响。同时,通过对摩擦电活性聚合物的化学改性方法的分类及其对发电的影响,重点阐述了化学改性对摩擦电活性聚合物的重要作用。为了提高聚合物的摩擦电负性,引入卤素等具有高负性的化学基团是有益的。这可以通过几种方法实现,包括使用硫骨架或铸造氟化自组装单层(sam),并探讨了对teng性能的影响。此外,向聚合物中添加填料是一种经过验证的提高其介电常数的技术,这一点特别重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1