Electrochemical ratiometry: A new route towards bioaffinity-based in vitro diagnostics

IF 4.5 3区 化学 Q1 Chemical Engineering Journal of Electroanalytical Chemistry Pub Date : 2023-09-01 DOI:10.1016/j.jelechem.2023.117667
Jin Song , Ghulam Abbas , Ashaq Ali , Yaohong Ma , Yiwei Li
{"title":"Electrochemical ratiometry: A new route towards bioaffinity-based in vitro diagnostics","authors":"Jin Song ,&nbsp;Ghulam Abbas ,&nbsp;Ashaq Ali ,&nbsp;Yaohong Ma ,&nbsp;Yiwei Li","doi":"10.1016/j.jelechem.2023.117667","DOIUrl":null,"url":null,"abstract":"<div><p><em>In vitro</em><span><span> diagnostics (IVD) is aimed at ensuring human welfare and life security. Electrochemical sensors have been utilized in different applications, such as </span>environmental contaminant<span> detection and food safety, especially in the field of IVD, due to their excellent properties such as high sensitivity, simple to use, and cost-effectiveness. However, reluctant reproducibility and accuracy are among the most insurmountable hindrances for electrochemical IVD sensors, especially bioaffinity-based ones essential in disease biomarker detection and infection prognoses. In recent years, inspired by the ratiometric strategy from fluorometry, electrochemically ratiometric biosensors have been increasingly developing. This review highlights recent advances in bioaffinity based electrochemically ratiometric sensors (BERS) for IVD applications. Their signal generation strategies and analysis applications, especially for potential applications in the real world, are introduced. Finally, we enlighted several thoughts and insights into the design and application of BERS in IVD and provided the challenges and perspectives in this domain.</span></span></p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":"944 ","pages":"Article 117667"},"PeriodicalIF":4.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572665723005271","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro diagnostics (IVD) is aimed at ensuring human welfare and life security. Electrochemical sensors have been utilized in different applications, such as environmental contaminant detection and food safety, especially in the field of IVD, due to their excellent properties such as high sensitivity, simple to use, and cost-effectiveness. However, reluctant reproducibility and accuracy are among the most insurmountable hindrances for electrochemical IVD sensors, especially bioaffinity-based ones essential in disease biomarker detection and infection prognoses. In recent years, inspired by the ratiometric strategy from fluorometry, electrochemically ratiometric biosensors have been increasingly developing. This review highlights recent advances in bioaffinity based electrochemically ratiometric sensors (BERS) for IVD applications. Their signal generation strategies and analysis applications, especially for potential applications in the real world, are introduced. Finally, we enlighted several thoughts and insights into the design and application of BERS in IVD and provided the challenges and perspectives in this domain.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电化学比率法:基于生物亲和度的体外诊断新途径
体外诊断(IVD)的目的是确保人类的福祉和生命安全。电化学传感器具有灵敏度高、使用简单、成本效益高等优点,已广泛应用于环境污染物检测、食品安全等领域,特别是在IVD领域。然而,不情愿的再现性和准确性是电化学IVD传感器最难以克服的障碍,尤其是基于生物亲和力的疾病生物标志物检测和感染预后中必不可少的传感器。近年来,受荧光法比值测量策略的启发,电化学比值生物传感器得到了越来越多的发展。本文综述了IVD应用中基于生物亲和的电化学比率传感器(BERS)的最新进展。介绍了它们的信号产生策略和分析应用,特别是在现实世界中的潜在应用。最后,提出了在IVD中设计和应用BERS的一些想法和见解,并提出了该领域面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electroanalytical Chemistry
Journal of Electroanalytical Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
7.50
自引率
6.70%
发文量
912
审稿时长
>12 weeks
期刊介绍: The Journal of Electroanalytical Chemistry is the foremost international journal devoted to the interdisciplinary subject of electrochemistry in all its aspects, theoretical as well as applied. Electrochemistry is a wide ranging area that is in a state of continuous evolution. Rather than compiling a long list of topics covered by the Journal, the editors would like to draw particular attention to the key issues of novelty, topicality and quality. Papers should present new and interesting electrochemical science in a way that is accessible to the reader. The presentation and discussion should be at a level that is consistent with the international status of the Journal. Reports describing the application of well-established techniques to problems that are essentially technical will not be accepted. Similarly, papers that report observations but fail to provide adequate interpretation will be rejected by the Editors. Papers dealing with technical electrochemistry should be submitted to other specialist journals unless the authors can show that their work provides substantially new insights into electrochemical processes.
期刊最新文献
Symmetrical dicyano-based imidazole molecule-assisted crystallization and defects passivation for high-performance perovskite solar cells 4,4′-Biphenyldicarboxylic acid as an anode for sodium-ion batteries: Different electrochemical behaviors in ester and ether-based electrolytes Cobalt-regulated NiFe-LDH for efficient electrocatalytic oxygen evolution in alkaline simulated industrial sewage and natural seawater Self-assembly crack metallic network applied on light-addressable potentiometric sensor for optimizing photoelectric conversion efficiency Continuous glucose metabolism monitoring platform for long-term analysis of tumor cell proliferation and drug response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1