Pub Date : 2023-10-13DOI: 10.1016/j.jelechem.2023.117857
Xumeng Hu , Shaolin Chen , Shiqi Huang , Minghuang Guo , Jingwei Zhu , Ping Hu , Yafeng Li , Mingdeng Wei
Benefiting from the simple and low-cost fabrication of the one-step anti-solvent spin-coating process, the perovskite solar cells (PSCs) have a boost development. However, a great number of defects are generated during solution-fabrication process, retarding the development of PSCs seriously. In this study, the utilization of 4,5-dicyanoimidazole (DCI) as an additive for perovskite precursor solution was investigated. The presence of the double –CN groups in DCI facilitated the formation of Lewis acid-base coordination with unsaturated Pb2+ ions, as well as interaction with I- anions by the –NH- moiety, resulting in the enhanced perovskite film crystallinity, the reduced grain boundaries, and a significant reduction in the defects density of the perovskite film. The decreased trap-assisted recombination and voltage open circuit (VOC) losses in the PSC resulted in the improved photovoltaic performance of device treated by DCI molecule, the PCE increased from 19.59 % to 21.87 % significantly. Moreover, the unencapsulated device with DCI additive exhibited a remarkable 87.8 % retention of its initial PCE after exposure under 10–20 % relative humidity for 60 days, demonstrating an excellent stability than control device.
{"title":"Symmetrical dicyano-based imidazole molecule-assisted crystallization and defects passivation for high-performance perovskite solar cells","authors":"Xumeng Hu , Shaolin Chen , Shiqi Huang , Minghuang Guo , Jingwei Zhu , Ping Hu , Yafeng Li , Mingdeng Wei","doi":"10.1016/j.jelechem.2023.117857","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117857","url":null,"abstract":"<div><p>Benefiting from the simple and low-cost fabrication of the one-step anti-solvent spin-coating process, the perovskite solar cells (PSCs) have a boost development. However, a great number of defects are generated during solution-fabrication process, retarding the development of PSCs seriously. In this study, the utilization of 4,5-dicyanoimidazole (DCI) as an additive for perovskite precursor solution was investigated. The presence of the double –CN groups in DCI facilitated the formation of Lewis acid-base coordination with unsaturated Pb<sup>2+</sup> ions, as well as interaction with I<sup>-</sup> anions by the –NH- moiety, resulting in the enhanced perovskite film crystallinity, the reduced grain boundaries, and a significant reduction in the defects density of the perovskite film. The decreased trap-assisted recombination and voltage open circuit (<em>V</em><sub>OC</sub>) losses in the PSC resulted in the improved photovoltaic performance of device treated by DCI molecule, the PCE increased from 19.59 % to 21.87 % significantly. Moreover, the unencapsulated device with DCI additive exhibited a remarkable 87.8 % retention of its initial PCE after exposure under 10–20 % relative humidity for 60 days, demonstrating an excellent stability than control device.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41227870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-11DOI: 10.1016/j.jelechem.2023.117852
Siyao Li , Huijia Wu , Chunjie Wu , Meng Jin , Huan Yi , Shi-Yu Lu , Yan Zhang
Organic electrode materials have been regarded as sustainable alternatives for sodium-ion batteries (SIBs) due to their high theoretical specific capacity, large reserves and wide sources from biomass. However, the variety of presently reported organic electrode materials is very limited and their essential electrochemical sodium storage behaviors also deserve further investigating. In this paper, we explore the electrochemical sodium storage behavior of a conjugated aromatic acid (4,4′-biphenyldicarboxylic acid, H2bpdc) in esters and ethers-based electrolytes. The results illustrate that in esters-based electrolytes, H2bpdc just shows limited capacity and poor electrochemical sodium storage kinetics. By contrast, in ethers-based electrolytes, H2bpdc experiences a process similar to conversion type mechanism from pristine acid to sodium salt, displaying fast kinetics and delivers a high reversible capacity of 280 mA h g−1. This research would provide basic and novel insights to the electrochemical sodium storage behaviors of promising organic electrode materials and accelerate the new materials exploration process for SIBs.
有机电极材料由于其高理论比容量、大储量和广泛的生物质来源,被认为是钠离子电池的可持续替代品。然而,目前报道的有机电极材料的种类非常有限,其基本的电化学钠存储行为也值得进一步研究。在本文中,我们探索了共轭芳香酸(4,4′-联苯二羧酸,H2bpdc)在基于酯和醚的电解质中的电化学钠存储行为。结果表明,在酯类电解质中,H2bpdc的容量有限,电化学储钠动力学较差。相比之下,在基于醚的电解质中,H2bpdc经历了类似于从原始酸到钠盐的转化型机制的过程,表现出快速的动力学,并提供280 mA h g−1的高可逆容量。这项研究将为有前景的有机电极材料的电化学钠存储行为提供基础和新的见解,并加速SIBs的新材料探索过程。
{"title":"4,4′-Biphenyldicarboxylic acid as an anode for sodium-ion batteries: Different electrochemical behaviors in ester and ether-based electrolytes","authors":"Siyao Li , Huijia Wu , Chunjie Wu , Meng Jin , Huan Yi , Shi-Yu Lu , Yan Zhang","doi":"10.1016/j.jelechem.2023.117852","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117852","url":null,"abstract":"<div><p>Organic electrode materials have been regarded as sustainable alternatives for sodium-ion batteries (SIBs) due to their high theoretical specific capacity, large reserves and wide sources from biomass. However, the variety of presently reported organic electrode materials is very limited and their essential electrochemical sodium storage behaviors also deserve further investigating. In this paper, we explore the electrochemical sodium storage behavior of a conjugated aromatic acid (4,4′-biphenyldicarboxylic acid, H<sub>2</sub>bpdc) in esters and ethers-based electrolytes. The results illustrate that in esters-based electrolytes, H<sub>2</sub>bpdc just shows limited capacity and poor electrochemical sodium storage kinetics. By contrast, in ethers-based electrolytes, H<sub>2</sub>bpdc experiences a process similar to conversion type mechanism from pristine acid to sodium salt, displaying fast kinetics and delivers a high reversible capacity of 280 mA h g<sup>−1</sup>. This research would provide basic and novel insights to the electrochemical sodium storage behaviors of promising organic electrode materials and accelerate the new materials exploration process for SIBs.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41227869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In view of the unquestionable necessity for rapid and accurate analysis of drug molecules to monitor patient overdose, numerous nanosensor-based technologies have been developed in addition to quality control of pharmaceutical manufacture and drug administration. In this regard, sensitive detection of a potent anticancer agent, nelarabine (NEL) was examined at the bare and modified glassy carbon electrode (GCE) with the help of differential pulse (DP) and cyclic voltammetry (CV) techniques. A unique and highly effective nanosensor was developed using a combination of bismuth (III) oxide nanoparticles (Bi2O3NPs), silver nanoparticles (AgNPs), and electrochemically reduced graphene oxide (ErGO) onto the GCE surface. The modified Bi2O3NPs-AgNPs-ErGO/GCE was characterized by scanning electron microscopy (SEM), CV, and electrochemical impedance spectroscopy (EIS) investigations. Influences of various parameters viz., loading of Bi2O3NPs, AgNPs, and GO on the modified GCE, electrolyte pH (PBS 7.0), accumulation potential (–0.2 V), and time (60 s), and scan rate (50 mV s−1) were optimized for NEL response. An enhancement in the current responses toward the oxidation of NEL was observed with the Bi2O3NPs-AgNPs-ErGO/GCE compared to that noticed with bare GCE. The modified GCE affirmed high sensitivity, low limit of detection (LOD), excellent reproducibility, repeatability, and storage stability that clearly indicated the effective accuracy of the developed nanosensor. The linear behavior in the concentration range was found to be 0.02–1.0 µM, with LOD values of 0.003 nM in PBS 7.0 and 0.065 nM in serum samples. The electrochemical mechanism of NEL at the bare and modified GCEs were revealed as diffusion-controlled and adsorption-controlled mechanism processes, respectively. The linear calibration curves at both the bare and modified GCEs were noticed for increasing NEL concentrations, as constructed from the DPV measurements. Applications of the Bi2O3NPs-AgNPs-ErGO/GCE for NEL detection in pharmaceutical dosage form and human serum sample showed well-accepted recovery results of 98–99 %. The effect of interfering agents was checked on the selectivity of the developed method, and the modified electrode was found to be selective toward NEL in the presence of these interfering agents.
{"title":"Decoration of Bi2O3NPs-AgNPs-ErGO as a first electrochemical nanosensor for sensitive determination of nelarabine in pharmaceutical dosage form and human serum samples","authors":"Md. Zahirul Kabir , Cem Erkmen , Sevinc Kurbanoglu , Gözde Aydogdu Tig , Bengi Uslu","doi":"10.1016/j.jelechem.2023.117651","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117651","url":null,"abstract":"<div><p>In view of the unquestionable necessity for rapid and accurate analysis of drug molecules to monitor patient overdose, numerous nanosensor-based technologies have been developed in addition to quality control of pharmaceutical manufacture and drug administration. In this regard, sensitive detection of a potent anticancer agent, nelarabine (NEL) was examined at the bare and modified glassy carbon electrode (GCE) with the help of differential pulse (DP) and cyclic voltammetry (CV) techniques. A unique and highly effective nanosensor was developed using a combination of bismuth (III) oxide nanoparticles (Bi<sub>2</sub>O<sub>3</sub>NPs), silver nanoparticles (AgNPs), and electrochemically reduced graphene oxide (ErGO) onto the GCE surface. The modified Bi<sub>2</sub>O<sub>3</sub>NPs-AgNPs-ErGO/GCE was characterized by scanning electron microscopy (SEM), CV, and electrochemical impedance spectroscopy (EIS) investigations. Influences of various parameters <em>viz.</em>, loading of Bi<sub>2</sub>O<sub>3</sub>NPs, AgNPs, and GO on the modified GCE, electrolyte pH (PBS 7.0), accumulation potential (–0.2 V), and time (60 s), and scan rate (50 mV s<sup>−1</sup>) were optimized for NEL response. An enhancement in the current responses toward the oxidation of NEL was observed with the Bi<sub>2</sub>O<sub>3</sub>NPs-AgNPs-ErGO/GCE compared to that noticed with bare GCE. The modified GCE affirmed high sensitivity, low limit of detection (LOD), excellent reproducibility, repeatability, and storage stability that clearly indicated the effective accuracy of the developed nanosensor. The linear behavior in the concentration range was found to be 0.02–1.0 µM, with LOD values of 0.003 nM in PBS 7.0 and 0.065 nM in serum samples. The electrochemical mechanism of NEL at the bare and modified GCEs were revealed as diffusion-controlled and adsorption-controlled mechanism processes, respectively. The linear calibration curves at both the bare and modified GCEs were noticed for increasing NEL concentrations, as constructed from the DPV measurements. Applications of the Bi<sub>2</sub>O<sub>3</sub>NPs-AgNPs-ErGO/GCE for NEL detection in pharmaceutical dosage form and human serum sample showed well-accepted recovery results of 98–99 %. The effect of interfering agents was checked on the selectivity of the developed method, and the modified electrode was found to be selective toward NEL in the presence of these interfering agents.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1624711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jelechem.2023.117670
Yuhua Luo, Yahui Zhang, Qidong Cao, Yongping Dong
Iridium complexes have been considered as potential promising electrochemiluminescent (ECL) reagents in recent years. However, the instability of ECL signal and easy leaching from the electrode severely limit their applications. In this work, iridium complex doped zinc oxide (ZnO) nanocomposites (Ir@ZnO) were synthesized, which could not only increase the loading amount of iridium complex, but also improve the stability of ECL signal. A sensitive ECL sensor for the detection of phenylalanie (Phe) was proposed via the host–guest recognition of cucurbit[8]uril (Q[8]) and Phe with Ir@ZnO nanocomposites as a signal probe. Q[8] was combined with Ir@ZnO nanocomposites via coordinate bond between carbonyl group of Q[8] and Ir and Zn atoms, which could quench the ECL intensity due to the accommodating ability of Q[8] for dissolved oxygen. In the presence of Phe, Q[8] could be released from the electrode surface through the strong host–guest interaction, and the ECL intensity was restored. The ECL system performed high sensitivity and low detection limit, indicating that the proposed ECL strategy was suitable for the detection of amino acids. Moreover, this work provided a new avenue for the application of water insoluble Ir complexes in ECL sensing field.
{"title":"A novel host–guest recognition electrochemiluminescence system for phenylalanine detection based on Ir@ZnO nanocomposites and cucurbit[8]uril","authors":"Yuhua Luo, Yahui Zhang, Qidong Cao, Yongping Dong","doi":"10.1016/j.jelechem.2023.117670","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117670","url":null,"abstract":"<div><p>Iridium complexes have been considered as potential promising electrochemiluminescent (ECL) reagents in recent years. However, the instability of ECL signal and easy leaching from the electrode severely limit their applications. In this work, iridium complex doped zinc oxide (ZnO) nanocomposites (Ir@ZnO) were synthesized, which could not only increase the loading amount of iridium complex, but also improve the stability of ECL signal. A sensitive ECL sensor for the detection of phenylalanie (Phe) was proposed via the host–guest recognition of cucurbit[8]uril (Q[8]) and Phe with Ir@ZnO nanocomposites as a signal probe. Q[8] was combined with Ir@ZnO nanocomposites via coordinate bond between carbonyl group of Q[8] and Ir and Zn atoms, which could quench the ECL intensity due to the accommodating ability of Q[8] for dissolved oxygen. In the presence of Phe, Q[8] could be released from the electrode surface through the strong host–guest interaction, and the ECL intensity was restored. The ECL system performed high sensitivity and low detection limit, indicating that the proposed ECL strategy was suitable for the detection of amino acids. Moreover, this work provided a new avenue for the application of water insoluble Ir complexes in ECL sensing field.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3396791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jelechem.2023.117662
Yong Chang , Meiling Liu , Tong Wu , Ruting Lin , Lin Liu , Qijun Song
Most of proteins in the commercial ELISA kits are recombinant with hexahistidine (His6) tags. Based on this fact, we proposed a simple procedure for the preparation of signal labels and the design of competitive immunosensors. The signal labels were fabricated through the high-affinity interaction between the His6 tails on the surface of recombinant proteins and the coordinatively unsaturated copper ions on the surface of pristine Cu-based metal organic framework (Cu-MOF). The recombinant protein-modified MOF could be captured by the sensor electrode, thus producing a strong differential pulse voltammetry signal through the electrochemical reduction of Cu2+ ions in MOF. However, the target protein in sample solution could compete with the His6-tagged protein on the surface of Cu-MOF to bind the antibody attached on the electrode, thus leading to the decrease in the electrochemical signal. The peak current showed an inversely relationship with the concentration of target protein. The competitive immunosensor exhibited a linear range of 1 pg/mL to 1 ng/mL with SARS-CoV-2 nucleocapsid protein (N-protein) as the target analyte. We believe that the method can be used to detect other proteins by utilizing the characteristic of recombinant proteins in commercial kits.
{"title":"Competitive electrochemical immunosensors by immobilization of hexahistidine-rich recombinant proteins on the signal labels","authors":"Yong Chang , Meiling Liu , Tong Wu , Ruting Lin , Lin Liu , Qijun Song","doi":"10.1016/j.jelechem.2023.117662","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117662","url":null,"abstract":"<div><p>Most of proteins in the commercial ELISA kits are recombinant with hexahistidine (His<sub>6</sub>) tags. Based on this fact, we proposed a simple procedure for the preparation of signal labels and the design of competitive immunosensors. The signal labels were fabricated through the high-affinity interaction between the His<sub>6</sub> tails on the surface of recombinant proteins and the coordinatively unsaturated copper ions on the surface of pristine Cu-based metal organic framework (Cu-MOF). The recombinant protein-modified MOF could be captured by the sensor electrode, thus producing a strong differential pulse voltammetry signal through the electrochemical reduction of Cu<sup>2+</sup> ions in MOF. However, the target protein in sample solution could compete with the His<sub>6</sub>-tagged protein on the surface of Cu-MOF to bind the antibody attached on the electrode, thus leading to the decrease in the electrochemical signal. The peak current showed an inversely relationship with the concentration of target protein. The competitive immunosensor exhibited a linear range of 1 pg/mL to 1 ng/mL with SARS-CoV-2 nucleocapsid protein (<em>N</em>-protein) as the target analyte. We believe that the method can be used to detect other proteins by utilizing the characteristic of recombinant proteins in commercial kits.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3082226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jelechem.2023.117640
Changgan Lai , Zhiliang Guo , Liu Nie , Donghuai Zhang , Fajun Li , Shuai Ji
Developing highly active, durable, and non-noble electrocatalysts for water-splitting is critical for efficient renewable energy conversion. Nickel-iron layered double-hydroxide (NiFe-LDH) materials show potential in achieving good catalytic performance, however, which was restricted by the scarce active sites and poor conductivity. Herein, we report a series of NiFe-LDH-based materials of expanded interlayer spacing constructed through S/N co-doping with rich active sites, used as a high-efficient bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions (OER and HER). The experimental results indicate that the intercalation/decoration on the interlayer structure of NiFe-LDH can efficiently reduce the energy barrier and accelerate reaction kinetics. Combining with the structural advantages, including the expanded lattice spacing and exposed active surface sites, the resulting S-N/NiFe-LDH anchored in nickel foam (NF) drives an alkaline electrolyzer with a cell voltage of 1.67 V at a current density of 100 mA cm−2, as well as robust stability over 100 h, which is much superior to the state-of-the-art Pt/C-RuO2 electrocatalysts.
开发高效、耐用、非贵重的水分解电催化剂是实现高效可再生能源转化的关键。镍铁层状双氢氧化物(NiFe-LDH)材料具有良好的催化性能,但受到活性位点稀缺和导电性差的限制。在此,我们报道了一系列通过S/N共掺杂构建的具有丰富活性位点的扩展层间距的nfe - ldh基材料,作为氧和氢析出反应(OER和HER)的高效双功能电催化剂。实验结果表明,在NiFe-LDH的层间结构上插入/修饰可以有效地降低能垒,加快反应动力学。结合结构优势,包括扩展的晶格间距和暴露的活性表面位点,所得到的S-N/NiFe-LDH锚定在泡沫镍(NF)中,在100 mA cm - 2的电流密度下驱动碱性电解槽电压为1.67 V,并且在100小时内具有强大的稳定性,这远远优于最先进的Pt/C-RuO2电催化剂。
{"title":"Sulphur- and nitrogen-codoped layered double hydroxides with expanded interlayer distance for enhanced overall water splitting","authors":"Changgan Lai , Zhiliang Guo , Liu Nie , Donghuai Zhang , Fajun Li , Shuai Ji","doi":"10.1016/j.jelechem.2023.117640","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117640","url":null,"abstract":"<div><p>Developing highly active, durable, and non-noble electrocatalysts for water-splitting is critical for efficient renewable energy conversion. Nickel-iron layered double-hydroxide (NiFe-LDH) materials show potential in achieving good catalytic performance, however, which was restricted by the scarce active sites and poor conductivity. Herein, we report a series of NiFe-LDH-based materials of expanded interlayer spacing constructed through S/N co-doping with rich active sites, used as a high-efficient bifunctional electrocatalyst for the oxygen and hydrogen evolution reactions (OER and HER). The experimental results indicate that the intercalation/decoration on the interlayer structure of NiFe-LDH can efficiently reduce the energy barrier and accelerate reaction kinetics. Combining with the structural advantages, including the expanded lattice spacing and exposed active surface sites, the resulting S-N/NiFe-LDH anchored in nickel foam (NF) drives an alkaline electrolyzer with a cell voltage of 1.67 V at a current density of 100 mA cm<sup>−2</sup>, as well as robust stability over 100 h, which is much superior to the state-of-the-art Pt/C-RuO<sub>2</sub> electrocatalysts.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3206587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jelechem.2023.117631
Yang Zang, Yan Zhang, Ruhua Wei, Huaiguo Xue, Jingjing Jiang
An antibody-free molecularly imprinted photoelectrochemical sensor was developed for alpha-fetoprotein (AFP) detection by means of difunctional polydopamine-based molecular imprinting polymers (PDA-MIP) on CdS nanoparticle-decorated ZnO nanorod arrays (CdS@ZnO NAs). Among them, the heterostructured CdS@ZnO NAs could accelerate the spatial separation of electron-hole pairs; while PDA-MIP not only provided abundant target recognition sites without expensive antibody, but also further increase the systemic photocurrent due to the enhanced light absorption capacity. After removing template molecules from PDA-MIP, the resulting imprinted cavities could be occupied by target AFP, leading to a decreased photocurrent. Moreover, the prepared sensor had a wide linearity in the range from 1 pg mL−1 to 1000 ng mL−1 with a low detection limit of 0.38 pg mL−1, as well as excellent selectivity and good stability. The application of AFP analysis in real human serum was also achieved, and the recoveries ranged from 99.2% to 105.2%.
{"title":"Difunctional molecularly imprinted polymers and heterostructured CdS nanoparticle-sensitized ZnO nanorod arrays for antibody-free photoelectrochemical alpha-fetoprotein sensor","authors":"Yang Zang, Yan Zhang, Ruhua Wei, Huaiguo Xue, Jingjing Jiang","doi":"10.1016/j.jelechem.2023.117631","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117631","url":null,"abstract":"<div><p><span>An antibody-free molecularly imprinted photoelectrochemical sensor was developed for alpha-fetoprotein (AFP) detection by means of difunctional polydopamine-based molecular imprinting polymers (PDA-MIP) on CdS nanoparticle-decorated ZnO nanorod arrays (CdS@ZnO NAs). Among them, the heterostructured CdS@ZnO NAs could accelerate the spatial separation of electron-hole pairs; while PDA-MIP not only provided abundant target recognition sites without expensive antibody, but also further increase the systemic photocurrent due to the enhanced light absorption capacity. After removing template molecules from PDA-MIP, the resulting imprinted cavities could be occupied by target AFP, leading to a decreased photocurrent. Moreover, the prepared sensor had a wide linearity in the range from 1 pg mL</span><sup>−1</sup> to 1000 ng mL<sup>−1</sup> with a low detection limit of 0.38 pg mL<sup>−1</sup>, as well as excellent selectivity and good stability. The application of AFP analysis in real human serum was also achieved, and the recoveries ranged from 99.2% to 105.2%.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1624707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jelechem.2023.117665
Yao Xu , Meng-Xin Bai , Zheng-Hua He , Jing-Feng Hou , Ling-Bin Kong
Vanadium pentoxide, as a low-cost, safe and reliable cathode electrode material. Its structure is prone to collapse during the process of repeated Zn2+ intercalation and deintercalation of aqueous zinc-ion batteries (AZIBs), so enhancing the structural stability of vanadium pentoxide and improving the rate performance has always been a challenge. In this work, sea urchin-like NaxV2O5 vanadate materials are obtained by solvothermal reaction, and the prepared samples exhibit a fast ion transport path during the process of Na+ chemical embedding in V2O5 framework, which is due to the plentiful active sites that nanowires can provide. This paves the way for high magnification performance. In addition, the unique sea urchin-like morphology with a large specific surface can continuously adapt to strain during ion insertion to obtain excellent long cycle performance. The above merits endow NaVO with a highly stable discharge capacity of 250.5 mA g−1 at 0.5 A/g and a long cycle capacity of 100 mA h g−1 maintains for more than 11,000 cycles at 10 A/g. Remarkably, the capacity retention rate up to 85.7%.
五氧化二钒,作为一种低成本、安全可靠的阴极电极材料。水溶液锌离子电池(AZIBs)在反复插入和脱嵌Zn2+的过程中,其结构容易崩溃,因此提高五氧化二钒的结构稳定性和提高倍率性能一直是一个挑战。本研究通过溶剂热反应制备了类似海胆的钒酸钠材料,制备的样品在V2O5框架中化学包埋Na+的过程中表现出快速的离子传输路径,这是由于纳米线可以提供丰富的活性位点。这为高放大性能铺平了道路。此外,独特的海胆样形态具有较大的比表面积,可以在离子插入过程中不断适应应变,从而获得优异的长周期性能。上述优点赋予了NaVO在0.5 a /g下具有250.5 mA g - 1的高度稳定的放电容量和100 mA h g - 1的长循环容量,在10 a /g下保持超过11,000次循环。值得注意的是,容量保留率高达85.7%。
{"title":"Solvothermal synthesis of sea urchin-like NaxV2O5 structure for ultra-high stability aqueous zinc ion batteries","authors":"Yao Xu , Meng-Xin Bai , Zheng-Hua He , Jing-Feng Hou , Ling-Bin Kong","doi":"10.1016/j.jelechem.2023.117665","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117665","url":null,"abstract":"<div><p>Vanadium pentoxide, as a low-cost, safe and reliable cathode electrode material. Its structure is prone to collapse during the process of repeated Zn<sup>2+</sup> intercalation and deintercalation of aqueous zinc-ion batteries (AZIBs), so enhancing the structural stability of vanadium pentoxide and improving the rate performance has always been a challenge. In this work, sea urchin-like Na<sub>x</sub>V<sub>2</sub>O<sub>5</sub> vanadate materials are obtained by solvothermal reaction, and the prepared samples exhibit a fast ion transport path during the process of Na<sup>+</sup> chemical embedding in V<sub>2</sub>O<sub>5</sub> framework, which is due to the plentiful active sites that nanowires can provide. This paves the way for high magnification performance. In addition, the unique sea urchin-like morphology with a large specific surface can continuously adapt to strain during ion insertion to obtain excellent long cycle performance. The above merits endow NaVO with a highly stable discharge capacity of 250.5 mA g<sup>−1</sup> at 0.5 A/g and a long cycle capacity of 100 mA h g<sup>−1</sup> maintains for more than 11,000 cycles at 10 A/g. Remarkably, the capacity retention rate up to 85.7%.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1702469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jelechem.2023.117634
Fangyuan Liu, Ling Liu, Yudong Lan, Jiarong Wu, Xinyu Li
Effective adjustment of structure and interface charge transfer ability of composite electrode materials are the key to improve the electrochemical performance of the zinc-ion capacitor. Herein, a novel 3D birdcage-like architecture composed of interactive carbon nanotube (CNT) network confining ZIF-67 is prepared though the infiltration–coating strategy, followed by a photo-assisted method to reinforce the coupling interaction between ZIF-67 and CNTs, which is directly used as an cathode of zinc-ion capacitors (ZICs). In terms of this composite, the birdcage-like structure with abundant voids facilitates the ionic/electrolyte transport and buffers the shrinkage/expansion of pseudocapacitive ZIF-67 during intercalation–conversion–deintercalation reactions. Moreover, the robust connection between the ZIF-67 and CNTs can effectively prevent structural deterioration and ensure the ion/electron transport between ZIF-67 and CNTs, thus resulting in a high Zn ion diffusion coefficient, which synergistically guarantees the rate capability and cyclic stability of ZICs. Consequently, the ZICs exhibit a high specific capacitance of 142.33F g−1 (0.5 A/g) and a high energy density of 44.5 Wh kg−1 (375 W kg−1). Furthermore, the ZICs shows excellent cycling stability (92.5% capacitance retention after 5000 cycles at a current density of 0.5 A/g). Our work provides a novel design tactic to enhance the storage properties of zinc ions.
有效调整复合电极材料的结构和界面电荷转移能力是提高锌离子电容器电化学性能的关键。本文通过渗透涂层策略制备了一种新型的三维鸟笼状结构,该结构由约束ZIF-67的相互作用碳纳米管(CNT)网络组成,然后通过光辅助方法增强ZIF-67与碳纳米管之间的耦合相互作用,并将其直接用作锌离子电容器(ZICs)的阴极。在该复合材料中,具有丰富空隙的鸟笼状结构有利于离子/电解质的传输,并缓冲假电容性ZIF-67在插层-转化-脱层反应中的收缩/膨胀。此外,ZIF-67与CNTs之间的牢固连接可以有效防止结构劣化,保证ZIF-67与CNTs之间的离子/电子传递,从而获得较高的Zn离子扩散系数,协同保证了ZICs的速率能力和循环稳定性。因此,zic具有142.33F g−1 (0.5 a /g)的高比电容和44.5 Wh kg−1 (375 W kg−1)的高能量密度。此外,zic表现出优异的循环稳定性,在0.5 a /g电流密度下,5000次循环后电容保持率为92.5%。我们的工作提供了一种新的设计策略来提高锌离子的储存性能。
{"title":"Synergistic engineering of infiltration–coating strategy and interfacial interaction boosts pseudocapacitive kinetics for zinc-ion capacitor","authors":"Fangyuan Liu, Ling Liu, Yudong Lan, Jiarong Wu, Xinyu Li","doi":"10.1016/j.jelechem.2023.117634","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117634","url":null,"abstract":"<div><p>Effective adjustment of structure and interface charge transfer ability of composite electrode materials are the key to improve the electrochemical performance of the zinc-ion capacitor. Herein, a novel 3D birdcage-like architecture composed of interactive carbon nanotube (CNT) network confining ZIF-67 is prepared though the infiltration–coating strategy, followed by a photo-assisted method to reinforce the coupling interaction between ZIF-67 and CNTs, which is directly used as an cathode of zinc-ion capacitors (ZICs). In terms of this composite, the birdcage-like structure with abundant voids facilitates the ionic/electrolyte transport and buffers the shrinkage/expansion of pseudocapacitive ZIF-67 during intercalation–conversion–deintercalation reactions. Moreover, the robust connection between the ZIF-67 and CNTs can effectively prevent structural deterioration and ensure the ion/electron transport between ZIF-67 and CNTs, thus resulting in a high Zn ion diffusion coefficient, which synergistically guarantees the rate capability and cyclic stability of ZICs. Consequently, the ZICs exhibit a high specific capacitance of 142.33F g<sup>−1</sup> (0.5 A/g) and a high energy density of 44.5 Wh kg<sup>−1</sup> (375 W kg<sup>−1</sup>). Furthermore, the ZICs shows excellent cycling stability (92.5% capacitance retention after 5000 cycles at a current density of 0.5 A/g). Our work provides a novel design tactic to enhance the storage properties of zinc ions.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1702463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jelechem.2023.117639
Yiwen Wang , Junhua Hu , Suxiang Liu , Di Zhu , Baofeng Zhao , Angang Song
P-type metal oxide semiconductor CuBi2O4 exhibits excellent energy band structures and photoelectric response characteristics, which are critical for photoelectrocatalytic water splitting. However, the photocurrent densities are still well below the theoretical limit due to poor charge carrier separation and transport properties. In this work, we report a synthetic method for the preparation of phase-pure CuBi2O4 photocathode films via spray pyrolysis by adjusting the evaporation rate of the atomized droplets. An increase in the evaporation rate of the solvent may fix the structure of the deposited film faster and decrease the time available for the establishment of the segregation gradient, thus producing phase-pure semiconductor films. This method reduces process complexity and cost, and the applicability of spray pyrolysis for the preparation of phase-pure CuBi2O4 films is also confirmed. In addition, the photoelectrochemical evaluation of the samples prepared under different treatment conditions reveals that hole transport critically affects the photoelectrocatalytic performance of CuBi2O4 photocathodes. CuO can be used as a hole transport layer to promote the collection and transfer of holes and reduce the recombination of photogenerated carriers.
{"title":"Fast solvent evaporation of phase pure CuBi2O4 photocathodes for photoelectrocatalytic water splitting","authors":"Yiwen Wang , Junhua Hu , Suxiang Liu , Di Zhu , Baofeng Zhao , Angang Song","doi":"10.1016/j.jelechem.2023.117639","DOIUrl":"https://doi.org/10.1016/j.jelechem.2023.117639","url":null,"abstract":"<div><p>P-type metal oxide semiconductor CuBi<sub>2</sub>O<sub>4</sub> exhibits excellent energy band structures and photoelectric response characteristics, which are critical for photoelectrocatalytic water splitting. However, the photocurrent densities are still well below the theoretical limit due to poor charge carrier separation and transport properties. In this work, we report a synthetic method for the preparation of phase-pure CuBi<sub>2</sub>O<sub>4</sub> photocathode films via spray pyrolysis by adjusting the evaporation rate of the atomized droplets. An increase in the evaporation rate of the solvent may fix the structure of the deposited film faster and decrease the time available for the establishment of the segregation gradient, thus producing phase-pure semiconductor films. This method reduces process complexity and cost, and the applicability of spray pyrolysis for the preparation of phase-pure CuBi<sub>2</sub>O<sub>4</sub> films is also confirmed. In addition, the photoelectrochemical evaluation of the samples prepared under different treatment conditions reveals that hole transport critically affects the photoelectrocatalytic performance of CuBi<sub>2</sub>O<sub>4</sub> photocathodes. CuO can be used as a hole transport layer to promote the collection and transfer of holes and reduce the recombination of photogenerated carriers.</p></div>","PeriodicalId":50545,"journal":{"name":"Journal of Electroanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":4.5,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3206585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}