Djallal Ikkene , Olivia M. Eggenberger , Cora-Ann Schoenenberger , Cornelia G. Palivan
{"title":"Engineering antimicrobial surfaces by harnessing polymeric nanoassemblies","authors":"Djallal Ikkene , Olivia M. Eggenberger , Cora-Ann Schoenenberger , Cornelia G. Palivan","doi":"10.1016/j.cocis.2023.101706","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing number of multidrug-resistant bacteria is a growing threat to global public health. Contaminated surfaces pose a major problem in the spreading of these superbugs and are a source of bacterial infections that are difficult to treat. Surfaces that repel bacteria or impede biofilms where bacteria are inaccessible to conventional drugs are in great demand for medical and technological applications. Immense multi-disciplinary efforts are being made to develop biocompatible, long-lasting, scalable, and cost-effective antimicrobial surfaces. Here, we highlight emerging strategies that involve harnessing natural and synthetic polymeric nanoassemblies that are antimicrobial either by themselves or through association with antimicrobial compounds to engineer antimicrobial surfaces. Our aim is to move underexplored nanoassemblies into the limelight. Based on their chemical versatility, structural tenability, and orthogonal activity of associated molecules and structures, the nanoassemblies discussed overcome cytotoxicity, non-biodegradability, and short-term antibacterial activity to offer novel surfaces with improved antibacterial and antibiofilm prospects.</p></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029423000316","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The increasing number of multidrug-resistant bacteria is a growing threat to global public health. Contaminated surfaces pose a major problem in the spreading of these superbugs and are a source of bacterial infections that are difficult to treat. Surfaces that repel bacteria or impede biofilms where bacteria are inaccessible to conventional drugs are in great demand for medical and technological applications. Immense multi-disciplinary efforts are being made to develop biocompatible, long-lasting, scalable, and cost-effective antimicrobial surfaces. Here, we highlight emerging strategies that involve harnessing natural and synthetic polymeric nanoassemblies that are antimicrobial either by themselves or through association with antimicrobial compounds to engineer antimicrobial surfaces. Our aim is to move underexplored nanoassemblies into the limelight. Based on their chemical versatility, structural tenability, and orthogonal activity of associated molecules and structures, the nanoassemblies discussed overcome cytotoxicity, non-biodegradability, and short-term antibacterial activity to offer novel surfaces with improved antibacterial and antibiofilm prospects.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.