Sanghun Park , Nakyung Yoon , Zahid Ullah , Bethwel Kipchirchir Tarus , Byeongwook Choi , Hoo Hugo Kim , Moon Son
{"title":"Energy storage capability of seawater batteries for intermittent power generation systems: Conceptualization and modeling","authors":"Sanghun Park , Nakyung Yoon , Zahid Ullah , Bethwel Kipchirchir Tarus , Byeongwook Choi , Hoo Hugo Kim , Moon Son","doi":"10.1016/j.jpowsour.2023.233322","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The use of renewable energy for power generation is increasing rapidly. However, residual electricity supplied in excess of demand is a global concern. To effectively utilize excess power, storing surplus renewable energy in </span>energy storage systems<span><span> (ESSs) is important. In this study, a seawater<span> battery (SWB) is proposed as an ESS for intermittent power resources, and its energy storage capability is evaluated. Four charging scenarios that imitate different forms of renewable energy (constant current, solar, tidal, and wind) reveal that SWB is an efficient ESS for intermittent </span></span>renewable energy sources<span><span>. Scenario-dependent energy efficiency follows the order: ideal constant current (83.6%) > solar power (80.4%) > tidal power (79.6%) > wind power (79.4%). The ability of two artificial intelligence models is also tested to estimate the potential of SWBs. A novel long short-term memory model outperforms an </span>artificial neural network model, predicting the potential of SWB with a high precision (R</span></span></span><sup>2</sup> > 0.99) and an extremely low error rate (<0.18%). Therefore, the conceptualization and modeling of an SWB as an ESS may pave the way for energy storage from and management of intermittent energy sources.</p></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"580 ","pages":"Article 233322"},"PeriodicalIF":8.1000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775323006985","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The use of renewable energy for power generation is increasing rapidly. However, residual electricity supplied in excess of demand is a global concern. To effectively utilize excess power, storing surplus renewable energy in energy storage systems (ESSs) is important. In this study, a seawater battery (SWB) is proposed as an ESS for intermittent power resources, and its energy storage capability is evaluated. Four charging scenarios that imitate different forms of renewable energy (constant current, solar, tidal, and wind) reveal that SWB is an efficient ESS for intermittent renewable energy sources. Scenario-dependent energy efficiency follows the order: ideal constant current (83.6%) > solar power (80.4%) > tidal power (79.6%) > wind power (79.4%). The ability of two artificial intelligence models is also tested to estimate the potential of SWBs. A novel long short-term memory model outperforms an artificial neural network model, predicting the potential of SWB with a high precision (R2 > 0.99) and an extremely low error rate (<0.18%). Therefore, the conceptualization and modeling of an SWB as an ESS may pave the way for energy storage from and management of intermittent energy sources.
期刊介绍:
The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells.
Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include:
• Portable electronics
• Electric and Hybrid Electric Vehicles
• Uninterruptible Power Supply (UPS) systems
• Storage of renewable energy
• Satellites and deep space probes
• Boats and ships, drones and aircrafts
• Wearable energy storage systems