Liquid crystalline elastomer actuators with dynamic covalent bonding: Synthesis, alignment, reprogrammability, and self-healing

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Opinion in Solid State & Materials Science Pub Date : 2023-06-01 DOI:10.1016/j.cossms.2023.101076
Gautam Das, Soo-Young Park
{"title":"Liquid crystalline elastomer actuators with dynamic covalent bonding: Synthesis, alignment, reprogrammability, and self-healing","authors":"Gautam Das,&nbsp;Soo-Young Park","doi":"10.1016/j.cossms.2023.101076","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid crystalline elastomers (LCEs) have demonstrated tremendous potential in applications such as soft robotics, biomedical materials, electronics, sensors, and biomimetic systems. The physical properties of LCEs are controlled by the degree of crosslinking, nature of the mesogens, and mesogen orientation in the LCE network structure. A wide range of dynamic covalent bonds (DCBs) capable of dynamic bond exchange reactions (DBERs) have been introduced into LCE structures to obtain intelligent materials in recent decades. In this review article, we discuss the molecular constitution, macrostructure, morphing mechanism, recent advances in LCEs with dynamic covalent bonds, the influence of DCBs on self-healing, reprogramming and reprocessing properties of LCE actuators, and challenges and opportunities in incorporating dynamic chemistry in the field of LCE actuators.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028623000219","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Liquid crystalline elastomers (LCEs) have demonstrated tremendous potential in applications such as soft robotics, biomedical materials, electronics, sensors, and biomimetic systems. The physical properties of LCEs are controlled by the degree of crosslinking, nature of the mesogens, and mesogen orientation in the LCE network structure. A wide range of dynamic covalent bonds (DCBs) capable of dynamic bond exchange reactions (DBERs) have been introduced into LCE structures to obtain intelligent materials in recent decades. In this review article, we discuss the molecular constitution, macrostructure, morphing mechanism, recent advances in LCEs with dynamic covalent bonds, the influence of DCBs on self-healing, reprogramming and reprocessing properties of LCE actuators, and challenges and opportunities in incorporating dynamic chemistry in the field of LCE actuators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有动态共价键的液晶弹性体致动器:合成、排列、可编程性和自我修复
液晶弹性体(LCEs)在软机器人、生物医学材料、电子、传感器和仿生系统等应用中显示出巨大的潜力。LCE的物理性质受LCE网络结构中交联程度、介元性质和介元取向的控制。近几十年来,各种能够进行动态键交换反应(DBERs)的动态共价键(DCBs)被引入到LCE结构中以获得智能材料。本文综述了动态共价键LCE的分子组成、宏观结构、变形机理、动态共价键LCE的最新研究进展、dcb对LCE致动器自愈、重编程和再加工性能的影响,以及动态化学在LCE致动器领域应用的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
期刊最新文献
Deformation-induced martensitic transformations: A strategy for overcoming the strength-ductility trade-off in high-entropy alloys Toward high-quality graphene film growth by chemical vapor deposition system Graphene- polymer nanocomposite-based wearable strain sensors for physiological signal Monitoring: Recent progress and challenges Spintronic devices as next-generation computation accelerators Recent progress in elastic and inelastic neutron scattering for chemical, polymeric, and biological investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1