The effects of limited proteolysis by trypsin on human haptoglobin

Iwona Katnik, Wanda Dobryszycka
{"title":"The effects of limited proteolysis by trypsin on human haptoglobin","authors":"Iwona Katnik,&nbsp;Wanda Dobryszycka","doi":"10.1016/0005-2795(81)90043-X","DOIUrl":null,"url":null,"abstract":"<div><p>Trypsin digestion of haptoglobin resulted in four glycopeptides. The glycopeptides were characterized by amino acid composition and molecular weight, as determined by thin-layer chromatography, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the presence or absence of 2-mercaptoethanol. Hemoglobin-binding capacity and immunological properties were investigated. Glycopeptides I and II did not form an active complex with hemoglobin and they inhibited the reaction of haptoglobin with specific antiserum by over 70%. Glycopeptides III and IV showed 11 and 4% of the hemoglobin-binding capacity and 82 and 67% of antigenic reactivity of native haptoglobin, respectively. Glycopeptide IV contained three antigenic determinants, whereas glycopeptides III contained four, one of them being exposed by trypsin digestion. In crossed two-dimensional immunoelectrophoresis, glycopeptide III showed at least four components reacting with antihaptoglobin serum, and glycopeptide IV, two components.</p></div>","PeriodicalId":100165,"journal":{"name":"Biochimica et Biophysica Acta (BBA) - Protein Structure","volume":"670 1","pages":"Pages 17-24"},"PeriodicalIF":0.0000,"publicationDate":"1981-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0005-2795(81)90043-X","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta (BBA) - Protein Structure","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/000527958190043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Trypsin digestion of haptoglobin resulted in four glycopeptides. The glycopeptides were characterized by amino acid composition and molecular weight, as determined by thin-layer chromatography, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis in the presence or absence of 2-mercaptoethanol. Hemoglobin-binding capacity and immunological properties were investigated. Glycopeptides I and II did not form an active complex with hemoglobin and they inhibited the reaction of haptoglobin with specific antiserum by over 70%. Glycopeptides III and IV showed 11 and 4% of the hemoglobin-binding capacity and 82 and 67% of antigenic reactivity of native haptoglobin, respectively. Glycopeptide IV contained three antigenic determinants, whereas glycopeptides III contained four, one of them being exposed by trypsin digestion. In crossed two-dimensional immunoelectrophoresis, glycopeptide III showed at least four components reacting with antihaptoglobin serum, and glycopeptide IV, two components.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胰蛋白酶有限蛋白水解对人触珠蛋白的影响
胰蛋白酶消化触珠蛋白产生四种糖肽。在2-巯基乙醇存在或不存在的情况下,通过薄层色谱和十二烷基硫酸钠-聚丙烯酰胺凝胶电泳测定了糖肽的氨基酸组成和分子量。研究了血红蛋白结合能力和免疫特性。糖肽I和II不与血红蛋白形成活性复合物,对接触珠蛋白与特异性抗血清的反应抑制作用达70%以上。糖肽III和IV分别具有11%和4%的血红蛋白结合能力和82%和67%的抗原反应性。糖肽IV含有三个抗原决定因子,而糖肽III含有四个,其中一个被胰蛋白酶消化暴露。在交叉双向免疫电泳中,糖肽III显示出至少4种成分与抗触珠蛋白血清反应,糖肽IV显示出2种成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Errata Protamine interacts with the D-domains of fibrinogen Studies on the primary structures of the exocellular d-alanyl-d-alanine peptidases of Streptomyces strain R61 and Actinomadura strain R39 Resonance Raman spectra of deoxyhemoproteins. Heme structure in relation to dioxygen binding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1