Scalable Synthesis of Carbon Nanomembranes from Amorphous Molecular Layers

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2023-08-16 DOI:10.1021/acsami.3c07369
Zhen Yao, Nikolaus Meyerbröker, Yubo Qi, Julian Cremer, Michael Westphal, Dario Anselmetti, Yang Yang* and Armin Gölzhäuser*, 
{"title":"Scalable Synthesis of Carbon Nanomembranes from Amorphous Molecular Layers","authors":"Zhen Yao,&nbsp;Nikolaus Meyerbröker,&nbsp;Yubo Qi,&nbsp;Julian Cremer,&nbsp;Michael Westphal,&nbsp;Dario Anselmetti,&nbsp;Yang Yang* and Armin Gölzhäuser*,&nbsp;","doi":"10.1021/acsami.3c07369","DOIUrl":null,"url":null,"abstract":"<p >Nanoporous carbon nanomembranes (CNMs) created by self-assembled monolayers ideally combine a high water flux and precise ion selectivity for molecular separation and water desalination. However, their practical implementation is often challenged by the availability of large epitaxial substrates, limiting the membrane up-scaling. Here, we report a scalable synthesis of CNMs from poly(4-vinylbiphenyl) (PVBP) spin-coated on SiO<sub>2</sub>/Si wafers. Electron irradiation of the amorphous PVBP molecular layers induces the formation of a continuous membrane with a thickness of 15 nm and a high density of subnanometer pores, providing a water permeance as high as 530 L m<sup>–2</sup> h<sup>–1</sup> bar<sup>–1</sup>, while repelling ions and molecules larger than 1 nm in size. A further introduction of a reinforced porous block copolymer layer enables the fabrication of centimeter-scale CNM composites that efficiently separate organic dyes from water. These results suggest a feasible route for large-scale nanomembrane fabrication.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.3c07369","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoporous carbon nanomembranes (CNMs) created by self-assembled monolayers ideally combine a high water flux and precise ion selectivity for molecular separation and water desalination. However, their practical implementation is often challenged by the availability of large epitaxial substrates, limiting the membrane up-scaling. Here, we report a scalable synthesis of CNMs from poly(4-vinylbiphenyl) (PVBP) spin-coated on SiO2/Si wafers. Electron irradiation of the amorphous PVBP molecular layers induces the formation of a continuous membrane with a thickness of 15 nm and a high density of subnanometer pores, providing a water permeance as high as 530 L m–2 h–1 bar–1, while repelling ions and molecules larger than 1 nm in size. A further introduction of a reinforced porous block copolymer layer enables the fabrication of centimeter-scale CNM composites that efficiently separate organic dyes from water. These results suggest a feasible route for large-scale nanomembrane fabrication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无定形分子层可扩展合成碳纳米膜
纳米多孔碳纳米膜(CNMs)由自组装单层形成,理想地结合了高水通量和精确的离子选择性,用于分子分离和海水淡化。然而,它们的实际实施经常受到大型外延衬底的可用性的挑战,限制了膜的扩展。在这里,我们报道了一种在SiO2/Si晶片上自旋涂覆聚(4-乙烯基联苯)(PVBP)的CNMs的可扩展合成。电子照射无定形PVBP分子层可形成厚度为15 nm的连续膜和高密度的亚纳米孔,其透水性高达530 L m-2 h-1 bar-1,同时可排斥尺寸大于1 nm的离子和分子。进一步引入增强多孔嵌段共聚物层,可以制造厘米级CNM复合材料,有效地将有机染料从水中分离出来。这些结果为大规模制备纳米膜提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Corked Microcapsules Enabling Controlled Ultrasound-Mediated Protein Delivery. Cross-Linking-Integrated Sequential Deposition: A Method for Efficient and Reproducible Bulk Heterojunctions in Organic Solar Cells. Efficient Fog-Harvesting Origami Fan. Fully Integrated Biosensing System for Dynamic Monitoring of Sweat Glucose and Real-Time pH Adjustment Based on 3D Graphene MXene Aerogel. Improvement of Self-Driven Nanowire-Based Ultraviolet Photodetectors by Metal-Organic Frameworks for Controlling Humanoid Robots.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1