Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2022-06-15 DOI:10.1016/j.msea.2022.143203
Zheng Li , Weiji Lai , Xin Tong , Deqiang You , Wei Li , Xiaojian Wang
{"title":"Design of TiZrNbTa multi-principal element alloys with outstanding mechanical properties and wear resistance","authors":"Zheng Li ,&nbsp;Weiji Lai ,&nbsp;Xin Tong ,&nbsp;Deqiang You ,&nbsp;Wei Li ,&nbsp;Xiaojian Wang","doi":"10.1016/j.msea.2022.143203","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Body-centered cubic (BCC) multi-principal element alloys (MPEAs) have drawn particular attention as orthopedic implant materials<span> recently, due to their high strength and excellent biocompatibility. However, these alloys often exhibit limited tensile ductility and relatively high </span></span>Young's modulus, which remain challenges for their potential biomedical applications. In this work, a synergistic design of high-performance biomedical MPEAs based on the principles of valence electron concentration theory and average </span>shear modulus mismatch for solid-solution strengthening is reported. Three TiZrNbTa MPEAs (Ti</span><sub>45</sub>Zr<sub>45</sub>Nb<sub>5</sub>Ta<sub>5</sub>, Ti<sub>42.5</sub>Zr<sub>42.5</sub>Nb<sub>5</sub>Ta<sub>10</sub>, Ti<sub>40</sub>Zr<sub>40</sub>Nb<sub>5</sub>Ta<sub>15</sub>) with different Ta content were designed. All the alloys exhibited single BCC structure and possessed outstanding tensile ductility (≥18.8%), as well as low Young's modulus (59.3±2.1–73.1±1.0 GPa). The yield strengths of these alloys are increasing with the increase of the Ta content, which can be correlated with the average shear modulus mismatch. In particular, Ti<sub>40</sub>Zr<sub>40</sub>Nb<sub>5</sub>Ta<sub>15</sub> alloy exhibits the highest yield strength (∼990.0±14.3 MPa) and high wear resistance for biomedical applications. Theoretical calculation suggested that the strength of the TiZrNbTa alloys is mainly attributed to the solid-solution strengthening effect, and increasing the Ta content can effectively enhance this effect.</p></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"845 ","pages":"Article 143203"},"PeriodicalIF":7.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509322006050","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

Abstract

Body-centered cubic (BCC) multi-principal element alloys (MPEAs) have drawn particular attention as orthopedic implant materials recently, due to their high strength and excellent biocompatibility. However, these alloys often exhibit limited tensile ductility and relatively high Young's modulus, which remain challenges for their potential biomedical applications. In this work, a synergistic design of high-performance biomedical MPEAs based on the principles of valence electron concentration theory and average shear modulus mismatch for solid-solution strengthening is reported. Three TiZrNbTa MPEAs (Ti45Zr45Nb5Ta5, Ti42.5Zr42.5Nb5Ta10, Ti40Zr40Nb5Ta15) with different Ta content were designed. All the alloys exhibited single BCC structure and possessed outstanding tensile ductility (≥18.8%), as well as low Young's modulus (59.3±2.1–73.1±1.0 GPa). The yield strengths of these alloys are increasing with the increase of the Ta content, which can be correlated with the average shear modulus mismatch. In particular, Ti40Zr40Nb5Ta15 alloy exhibits the highest yield strength (∼990.0±14.3 MPa) and high wear resistance for biomedical applications. Theoretical calculation suggested that the strength of the TiZrNbTa alloys is mainly attributed to the solid-solution strengthening effect, and increasing the Ta content can effectively enhance this effect.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计具有优异力学性能和耐磨性的TiZrNbTa多主元素合金
体心立方(BCC)多主元素合金(mpea)由于其高强度和良好的生物相容性,近年来作为骨科植入材料备受关注。然而,这些合金通常表现出有限的拉伸延展性和相对较高的杨氏模量,这对其潜在的生物医学应用仍然是挑战。本文报道了一种基于价电子浓度理论和固溶强化平均剪切模量失配原理的高性能生物医用mpea协同设计。设计了三种不同Ta含量的TiZrNbTa mpea (Ti45Zr45Nb5Ta5、Ti42.5Zr42.5Nb5Ta10、Ti40Zr40Nb5Ta15)。所有合金均为单一BCC组织,具有良好的拉伸延展性(≥18.8%)和较低的杨氏模量(59.3±2.1 ~ 73.1±1.0 GPa)。这些合金的屈服强度随Ta含量的增加而增加,这与平均剪切模量失配有关。特别是,Ti40Zr40Nb5Ta15合金在生物医学应用中具有最高的屈服强度(~ 990.0±14.3 MPa)和高耐磨性。理论计算表明,TiZrNbTa合金的强度主要来源于固溶强化效应,增加Ta含量可以有效增强固溶强化效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Design and synergistic strengthening mechanisms of high strength-toughness Fe-Al-Ta alloy with multi-scale architecture Enabling superior impact toughness of low-density δ-ferrite steel by dispersing ultra-fine spheroidized carbides in the ferrite/carbide composite lamellae Duplex microstructure enhanced mechanical property and underlined mechanism in Fe35MnxAl0.1C low-density steel Electric current-driven microstructural recovery and crack resistance enhancement in Ni-based superalloy Inconel 718 Tuning mechanical anisotropy in laser powder bed fusion via a rotational remelting scan strategy: A case study in niobium-based alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1