Mengjiao Fan , Yuewen Shao , Kai Sun , Yuchen Jiang , Shu Zhang , Yi Wang , Song Hu , Jun Xiang , Xun Hu
{"title":"Bio-oil as a carbon source for synthesis of pin-like cobalt catalyst for hydrogenation of o-chloronitrobenzene","authors":"Mengjiao Fan , Yuewen Shao , Kai Sun , Yuchen Jiang , Shu Zhang , Yi Wang , Song Hu , Jun Xiang , Xun Hu","doi":"10.1016/j.fuproc.2023.107814","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Bio-oil as a carbon source can be used to prepare hybrid metal@carbon material while the polymerization of which generally prevents metals from exposure. In this study, melamine was used as a structural </span>regulating agent<span> for preparing Co/N/C catalyst via heating the mixture of cobalt nitrate, melamine and bio-oil for hydrogenation of o-chloronitrobenzene (o-CNB). The results showed that the Co species was encapsulated in the carbon structure from cross-polymerization of melamine and bio-oil at 600 °C. The further heating to 900 °C led to decomposition of melamine-derived substance, and meanwhile cobalt oxide was reduced and confined in the resulting carbon structure. The formed metallic Co catalyzed the growth of long carbon nanotube with cobalt on the tip, forming the Co/N/C catalyst of higher specific surface area (128.2 m</span></span><sup>2</sup><span>/g) and metallic Co dispersion (3.7%), rendering the superior activity for hydrogenation of o-CNB with the yield of o-chloroaniline up to 90.2%. The encapsulation or exposure of Co species was closely related to relative ratio of bio-oil and melamine in the catalyst precursors. Additionally, leaching of cobalt, due to dechlorination of o-CNB, was found to be an issue of Co/N/C catalyst but not for that of Ni/N/C catalyst.</span></p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"248 ","pages":"Article 107814"},"PeriodicalIF":7.2000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382023001625","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-oil as a carbon source can be used to prepare hybrid metal@carbon material while the polymerization of which generally prevents metals from exposure. In this study, melamine was used as a structural regulating agent for preparing Co/N/C catalyst via heating the mixture of cobalt nitrate, melamine and bio-oil for hydrogenation of o-chloronitrobenzene (o-CNB). The results showed that the Co species was encapsulated in the carbon structure from cross-polymerization of melamine and bio-oil at 600 °C. The further heating to 900 °C led to decomposition of melamine-derived substance, and meanwhile cobalt oxide was reduced and confined in the resulting carbon structure. The formed metallic Co catalyzed the growth of long carbon nanotube with cobalt on the tip, forming the Co/N/C catalyst of higher specific surface area (128.2 m2/g) and metallic Co dispersion (3.7%), rendering the superior activity for hydrogenation of o-CNB with the yield of o-chloroaniline up to 90.2%. The encapsulation or exposure of Co species was closely related to relative ratio of bio-oil and melamine in the catalyst precursors. Additionally, leaching of cobalt, due to dechlorination of o-CNB, was found to be an issue of Co/N/C catalyst but not for that of Ni/N/C catalyst.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.