Polyxeni P. Angelopoulou , Ioannis Moutsios , Gkreti-Maria Manesi , Dimitri A. Ivanov , Georgios Sakellariou , Apostolos Avgeropoulos
{"title":"Designing high χ copolymer materials for nanotechnology applications: A systematic bulk vs. thin films approach","authors":"Polyxeni P. Angelopoulou , Ioannis Moutsios , Gkreti-Maria Manesi , Dimitri A. Ivanov , Georgios Sakellariou , Apostolos Avgeropoulos","doi":"10.1016/j.progpolymsci.2022.101625","DOIUrl":null,"url":null,"abstract":"<div><p>This review article discusses the origins of self-assembly behavior of linear and non-linear block co- and terpolymers and their application towards the fabrication of high-resolution patterns for nanolithography applications. Comparative analysis for the microphase separation in bulk and thin films is provided, to map the fundamentals of various types of block copolymers (BCPs) inherent properties prior to their use in advanced applications. The opportunities of high-χ/low-N and/or complex architecture co- and terpolymers to self-assemble into nanostructures that are beyond the limitations of current lithographic techniques will be presented. The role of molecular characteristics and immiscibility of the blocks on the formation of sub-10 nm or sub-5 nm structures will be discussed. Recent advances in directed self-assembly (or DSA) enable low defect density, extremely minimal dimensions, facile processability, etching selectivity, low-cost and ability to design various patterns. The opportunities of these strategies will be discussed in the context of technological standard requirements and their potential will be evaluated.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"135 ","pages":"Article 101625"},"PeriodicalIF":26.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967002200123X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 6
Abstract
This review article discusses the origins of self-assembly behavior of linear and non-linear block co- and terpolymers and their application towards the fabrication of high-resolution patterns for nanolithography applications. Comparative analysis for the microphase separation in bulk and thin films is provided, to map the fundamentals of various types of block copolymers (BCPs) inherent properties prior to their use in advanced applications. The opportunities of high-χ/low-N and/or complex architecture co- and terpolymers to self-assemble into nanostructures that are beyond the limitations of current lithographic techniques will be presented. The role of molecular characteristics and immiscibility of the blocks on the formation of sub-10 nm or sub-5 nm structures will be discussed. Recent advances in directed self-assembly (or DSA) enable low defect density, extremely minimal dimensions, facile processability, etching selectivity, low-cost and ability to design various patterns. The opportunities of these strategies will be discussed in the context of technological standard requirements and their potential will be evaluated.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.