Recent research progress in PEM fuel cell electrocatalyst degradation and mitigation strategies

IF 22.2 Q1 CHEMISTRY, MULTIDISCIPLINARY EnergyChem Pub Date : 2021-09-01 DOI:10.1016/j.enchem.2021.100061
Xin Wei , Ru-Zhi Wang , Wei Zhao , Ge Chen , Mao-Rong Chai , Lei Zhang , Jiujun Zhang
{"title":"Recent research progress in PEM fuel cell electrocatalyst degradation and mitigation strategies","authors":"Xin Wei ,&nbsp;Ru-Zhi Wang ,&nbsp;Wei Zhao ,&nbsp;Ge Chen ,&nbsp;Mao-Rong Chai ,&nbsp;Lei Zhang ,&nbsp;Jiujun Zhang","doi":"10.1016/j.enchem.2021.100061","DOIUrl":null,"url":null,"abstract":"<div><p><span>The performance degradation<span> of proton exchange membrane fuel cells (PEMFCs) is one of the most critical challenges in their practical applications. Degradations of electrocatalysts for </span></span>oxygen reduction reaction<span><span> (ORR) at cathode and hydrogen oxidation reaction (HOR) at the anode are the major contributors to PEMFC degradation, which are mainly induced by fuel/air impurities, unintentional harmful species during the preparation and use of the catalysts, as well as catalyst decomposition during the operation. This review summarizes the recent research on PEMFC performance degradation and the progress in developing </span>mitigation strategies<span> for avoiding the degradation. Several aspects are emphasized as follows: the understanding of catalyst poisoning<span> phenomena, influencing factors, and general degradation mechanisms. Several technical challenges are analyzed and the corresponding future research directions are proposed to facilitate the further research and development of mitigation strategies for PEMFC catalyst degradation.</span></span></span></p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"3 5","pages":"Article 100061"},"PeriodicalIF":22.2000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778021000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 22

Abstract

The performance degradation of proton exchange membrane fuel cells (PEMFCs) is one of the most critical challenges in their practical applications. Degradations of electrocatalysts for oxygen reduction reaction (ORR) at cathode and hydrogen oxidation reaction (HOR) at the anode are the major contributors to PEMFC degradation, which are mainly induced by fuel/air impurities, unintentional harmful species during the preparation and use of the catalysts, as well as catalyst decomposition during the operation. This review summarizes the recent research on PEMFC performance degradation and the progress in developing mitigation strategies for avoiding the degradation. Several aspects are emphasized as follows: the understanding of catalyst poisoning phenomena, influencing factors, and general degradation mechanisms. Several technical challenges are analyzed and the corresponding future research directions are proposed to facilitate the further research and development of mitigation strategies for PEMFC catalyst degradation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEM燃料电池电催化剂降解及缓解策略研究进展
质子交换膜燃料电池(pemfc)的性能退化是其实际应用中最关键的挑战之一。阴极氧还原反应(ORR)和阳极氢氧化反应(HOR)电催化剂的降解是导致PEMFC降解的主要原因,主要是由燃料/空气杂质、催化剂制备和使用过程中无意中产生的有害物质以及运行过程中催化剂的分解引起的。本文综述了近年来关于PEMFC性能退化的研究以及在制定缓解策略以避免退化方面的进展。强调了以下几个方面:对催化剂中毒现象、影响因素和一般降解机制的理解。分析了若干技术挑战,并提出了相应的未来研究方向,以促进PEMFC催化剂降解缓解策略的进一步研究和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EnergyChem
EnergyChem Multiple-
CiteScore
40.80
自引率
2.80%
发文量
23
审稿时长
40 days
期刊介绍: EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage
期刊最新文献
Hierarchically ordered meso-/macroporous MOF-based materials for catalysis and energy applications Hydrothermal treatment of lignocellulosic biomass towards low-carbon development: Production of high-value-added bioproducts Progresses and insights of thermoelectrochemical devices for low-grade heat harvesting: From mechanisms, materials to devices Hole transport materials for scalable p-i-n perovskite solar modules Highly asymmetrically configured single atoms anchored on flame-roasting deposited carbon black as cathode catalysts for ultrahigh power density Zn-air batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1