Xiaoyu Yuan , Kelie Chen , Fang Zheng , Sinan Xu , Yating Li , Yuwei Wang , Heng Ni , Fang Wang , Zhenyan Cui , Yuheng Qin , Dajing Xia , Yihua Wu
{"title":"Low-dose BPA and its substitute BPS promote ovarian cancer cell stemness via a non-canonical PINK1/p53 mitophagic signaling","authors":"Xiaoyu Yuan , Kelie Chen , Fang Zheng , Sinan Xu , Yating Li , Yuwei Wang , Heng Ni , Fang Wang , Zhenyan Cui , Yuheng Qin , Dajing Xia , Yihua Wu","doi":"10.1016/j.jhazmat.2023.131288","DOIUrl":null,"url":null,"abstract":"<div><p><span>The environmental toxicity of bisphenol A (BPA) and its analog like bisphenol S (BPS) have drawn wide attention, but their roles in cancer progression remain controversial. Here, we investigated the effect of BPA/BPS on the development of ovarian cancer. Human internal BPA/BPS exposure levels were analyzed from </span>NHANES 2013–2016 data. We treated human ovarian cancer cells with 0−1000 nM BPA/BPS and found that 100 nM BPA/BPS treatment significantly increased Cancer Stem Cell (CSC) markers expression including OCT4, NANOG and SOX2. Cancer cell stemness evaluation induced by BPA/BPS was notably attenuated by the knockdown of PINK1 or Mdivi-1 treatment. The activation of PINK1 initiated mitophagy by inhibiting p-p53 nuclear translocation in a non-canonical manner. In vivo studies validated that BPA/BPS-exposed mice have higher tumor metastasis incidence compared with the control group, while mitophagy inhibition blocked such a promotion effect. In addition, CSC markers such as SOX2 had been found to be overexpressed in the tumor tissues of BPA/BPS exposure group. Taken together, the findings herein first provide the evidence that environmentally relevant BPA/BPS exposure could enhance ovarian cancer cell stemness through a non-canonical PINK1/p53 mitophagic pathway, raising concerns about the potential population hazards of BPA and other bisphenol analogs.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"452 ","pages":"Article 131288"},"PeriodicalIF":12.2000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389423005708","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 2
Abstract
The environmental toxicity of bisphenol A (BPA) and its analog like bisphenol S (BPS) have drawn wide attention, but their roles in cancer progression remain controversial. Here, we investigated the effect of BPA/BPS on the development of ovarian cancer. Human internal BPA/BPS exposure levels were analyzed from NHANES 2013–2016 data. We treated human ovarian cancer cells with 0−1000 nM BPA/BPS and found that 100 nM BPA/BPS treatment significantly increased Cancer Stem Cell (CSC) markers expression including OCT4, NANOG and SOX2. Cancer cell stemness evaluation induced by BPA/BPS was notably attenuated by the knockdown of PINK1 or Mdivi-1 treatment. The activation of PINK1 initiated mitophagy by inhibiting p-p53 nuclear translocation in a non-canonical manner. In vivo studies validated that BPA/BPS-exposed mice have higher tumor metastasis incidence compared with the control group, while mitophagy inhibition blocked such a promotion effect. In addition, CSC markers such as SOX2 had been found to be overexpressed in the tumor tissues of BPA/BPS exposure group. Taken together, the findings herein first provide the evidence that environmentally relevant BPA/BPS exposure could enhance ovarian cancer cell stemness through a non-canonical PINK1/p53 mitophagic pathway, raising concerns about the potential population hazards of BPA and other bisphenol analogs.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.