Review on technologies for conversion of natural gas to methanol

IF 4.9 2区 工程技术 Q2 ENERGY & FUELS Journal of Natural Gas Science and Engineering Pub Date : 2022-12-01 DOI:10.1016/j.jngse.2022.104845
N. Salahudeen , A.A. Rasheed , A. Babalola , A.U. Moses
{"title":"Review on technologies for conversion of natural gas to methanol","authors":"N. Salahudeen ,&nbsp;A.A. Rasheed ,&nbsp;A. Babalola ,&nbsp;A.U. Moses","doi":"10.1016/j.jngse.2022.104845","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous flaring of natural gas remains a great environmental threatening practice going on in most upstream hydrocarbon production industry across the globe. About 150 billion m<sup>3</sup><span><span> of natural gas are flared annually, producing approximately 400 million tons of carbon dioxide alone among other greenhouse gases. A search into a viable method for natural gas conversion to methanol becomes imperative not only to save the soul of the ever-changing climate but also to bring an end to wastage of valuable resources by converting hitherto wasted natural gas to wealth. Currently the technologies of conversion of natural gas to methanol could be categorized into the conventional and the innovative technologies. The conventional technology is sub-divided into the indirect method also called the Fischer-Tropsch Synthesis (FTS) method and the direct method. The major commercial technology currently in use for </span>production of methanol<span> from methane is the FTS method which involves basically two steps which are the steam reforming<span> and the syngas<span> hydrogenation steps. The FTS method is highly energy intensive and this is a factor responsible for its low energetic efficiency. The direct conversion of methane to methanol is a one-step partial oxidation and lower temperature method having higher energetic efficiency advantage over the FTS method. The direct method occurs at temperature range of 380–470 °C and pressure range of 1–5 MPa while the FTS occurs at temperature range of 700–1100 °C and atmospheric pressure. Both methods are carried out under effect of metallic oxide catalysts such as Mo, V, Cr, Bi, Cu, Zn, etc. The innovative methods which include electrochemical, solar and plasma irradiation methods can be described as an approach to either of the two conventional methods in an innovative way while the biological method is a natural process driven by methane monooxygenase (MMO) enzyme released by methanotrophic bacteria. The aim of this study is to review the current state of the technology for conversion of methane to methanol so as to make abreast the recent advances and challenges in the area.</span></span></span></span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022004310","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Continuous flaring of natural gas remains a great environmental threatening practice going on in most upstream hydrocarbon production industry across the globe. About 150 billion m3 of natural gas are flared annually, producing approximately 400 million tons of carbon dioxide alone among other greenhouse gases. A search into a viable method for natural gas conversion to methanol becomes imperative not only to save the soul of the ever-changing climate but also to bring an end to wastage of valuable resources by converting hitherto wasted natural gas to wealth. Currently the technologies of conversion of natural gas to methanol could be categorized into the conventional and the innovative technologies. The conventional technology is sub-divided into the indirect method also called the Fischer-Tropsch Synthesis (FTS) method and the direct method. The major commercial technology currently in use for production of methanol from methane is the FTS method which involves basically two steps which are the steam reforming and the syngas hydrogenation steps. The FTS method is highly energy intensive and this is a factor responsible for its low energetic efficiency. The direct conversion of methane to methanol is a one-step partial oxidation and lower temperature method having higher energetic efficiency advantage over the FTS method. The direct method occurs at temperature range of 380–470 °C and pressure range of 1–5 MPa while the FTS occurs at temperature range of 700–1100 °C and atmospheric pressure. Both methods are carried out under effect of metallic oxide catalysts such as Mo, V, Cr, Bi, Cu, Zn, etc. The innovative methods which include electrochemical, solar and plasma irradiation methods can be described as an approach to either of the two conventional methods in an innovative way while the biological method is a natural process driven by methane monooxygenase (MMO) enzyme released by methanotrophic bacteria. The aim of this study is to review the current state of the technology for conversion of methane to methanol so as to make abreast the recent advances and challenges in the area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天然气制甲醇技术综述
在全球大多数上游油气生产行业中,天然气的连续燃烧仍然是一种严重的环境威胁。每年大约有1500亿立方米的天然气被燃烧,在其他温室气体中,仅二氧化碳就产生了大约4亿吨。寻找一种将天然气转化为甲醇的可行方法势在必行,这不仅是为了拯救不断变化的气候的灵魂,也是为了通过将迄今为止被浪费的天然气转化为财富来结束宝贵资源的浪费。目前,天然气制甲醇的技术可分为常规技术和创新技术。传统的合成方法分为间接法,也称为费托合成法(FTS)和直接法。目前用于从甲烷中生产甲醇的主要商业技术是FTS方法,该方法基本上包括两个步骤,即蒸汽重整和合成气加氢步骤。FTS方法是高能量密集型的,这是其能量效率低的一个因素。甲烷直接转化为甲醇是一步部分氧化和较低温度的方法,比FTS方法具有更高的能量效率优势。直接法在温度380-470°C和压力1-5 MPa范围内发生,而FTS在温度700-1100°C和大气压范围内发生。两种方法都是在Mo、V、Cr、Bi、Cu、Zn等金属氧化物催化剂的作用下进行的。电化学、太阳能和等离子体辐照等创新方法可以被描述为两种传统方法中的一种创新方法,而生物方法是由甲烷营养菌释放的甲烷单加氧酶(MMO)酶驱动的自然过程。本研究的目的是回顾甲烷转化为甲醇的技术现状,以便了解该领域的最新进展和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Natural Gas Science and Engineering
Journal of Natural Gas Science and Engineering ENERGY & FUELS-ENGINEERING, CHEMICAL
CiteScore
8.90
自引率
0.00%
发文量
388
审稿时长
3.6 months
期刊介绍: The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market. An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.
期刊最新文献
Editorial Board Machine learning for drilling applications: A review Quantitative characterization of methane adsorption in shale using low-field NMR Dual mechanisms of matrix shrinkage affecting permeability evolution and gas production in coal reservoirs: Theoretical analysis and numerical simulation Experimental study on the effect of hydrate reformation on gas permeability of marine sediments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1