N. Salahudeen , A.A. Rasheed , A. Babalola , A.U. Moses
{"title":"Review on technologies for conversion of natural gas to methanol","authors":"N. Salahudeen , A.A. Rasheed , A. Babalola , A.U. Moses","doi":"10.1016/j.jngse.2022.104845","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous flaring of natural gas remains a great environmental threatening practice going on in most upstream hydrocarbon production industry across the globe. About 150 billion m<sup>3</sup><span><span> of natural gas are flared annually, producing approximately 400 million tons of carbon dioxide alone among other greenhouse gases. A search into a viable method for natural gas conversion to methanol becomes imperative not only to save the soul of the ever-changing climate but also to bring an end to wastage of valuable resources by converting hitherto wasted natural gas to wealth. Currently the technologies of conversion of natural gas to methanol could be categorized into the conventional and the innovative technologies. The conventional technology is sub-divided into the indirect method also called the Fischer-Tropsch Synthesis (FTS) method and the direct method. The major commercial technology currently in use for </span>production of methanol<span> from methane is the FTS method which involves basically two steps which are the steam reforming<span> and the syngas<span> hydrogenation steps. The FTS method is highly energy intensive and this is a factor responsible for its low energetic efficiency. The direct conversion of methane to methanol is a one-step partial oxidation and lower temperature method having higher energetic efficiency advantage over the FTS method. The direct method occurs at temperature range of 380–470 °C and pressure range of 1–5 MPa while the FTS occurs at temperature range of 700–1100 °C and atmospheric pressure. Both methods are carried out under effect of metallic oxide catalysts such as Mo, V, Cr, Bi, Cu, Zn, etc. The innovative methods which include electrochemical, solar and plasma irradiation methods can be described as an approach to either of the two conventional methods in an innovative way while the biological method is a natural process driven by methane monooxygenase (MMO) enzyme released by methanotrophic bacteria. The aim of this study is to review the current state of the technology for conversion of methane to methanol so as to make abreast the recent advances and challenges in the area.</span></span></span></span></p></div>","PeriodicalId":372,"journal":{"name":"Journal of Natural Gas Science and Engineering","volume":"108 ","pages":"Article 104845"},"PeriodicalIF":4.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Gas Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875510022004310","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Continuous flaring of natural gas remains a great environmental threatening practice going on in most upstream hydrocarbon production industry across the globe. About 150 billion m3 of natural gas are flared annually, producing approximately 400 million tons of carbon dioxide alone among other greenhouse gases. A search into a viable method for natural gas conversion to methanol becomes imperative not only to save the soul of the ever-changing climate but also to bring an end to wastage of valuable resources by converting hitherto wasted natural gas to wealth. Currently the technologies of conversion of natural gas to methanol could be categorized into the conventional and the innovative technologies. The conventional technology is sub-divided into the indirect method also called the Fischer-Tropsch Synthesis (FTS) method and the direct method. The major commercial technology currently in use for production of methanol from methane is the FTS method which involves basically two steps which are the steam reforming and the syngas hydrogenation steps. The FTS method is highly energy intensive and this is a factor responsible for its low energetic efficiency. The direct conversion of methane to methanol is a one-step partial oxidation and lower temperature method having higher energetic efficiency advantage over the FTS method. The direct method occurs at temperature range of 380–470 °C and pressure range of 1–5 MPa while the FTS occurs at temperature range of 700–1100 °C and atmospheric pressure. Both methods are carried out under effect of metallic oxide catalysts such as Mo, V, Cr, Bi, Cu, Zn, etc. The innovative methods which include electrochemical, solar and plasma irradiation methods can be described as an approach to either of the two conventional methods in an innovative way while the biological method is a natural process driven by methane monooxygenase (MMO) enzyme released by methanotrophic bacteria. The aim of this study is to review the current state of the technology for conversion of methane to methanol so as to make abreast the recent advances and challenges in the area.
期刊介绍:
The objective of the Journal of Natural Gas Science & Engineering is to bridge the gap between the engineering and the science of natural gas by publishing explicitly written articles intelligible to scientists and engineers working in any field of natural gas science and engineering from the reservoir to the market.
An attempt is made in all issues to balance the subject matter and to appeal to a broad readership. The Journal of Natural Gas Science & Engineering covers the fields of natural gas exploration, production, processing and transmission in its broadest possible sense. Topics include: origin and accumulation of natural gas; natural gas geochemistry; gas-reservoir engineering; well logging, testing and evaluation; mathematical modelling; enhanced gas recovery; thermodynamics and phase behaviour, gas-reservoir modelling and simulation; natural gas production engineering; primary and enhanced production from unconventional gas resources, subsurface issues related to coalbed methane, tight gas, shale gas, and hydrate production, formation evaluation; exploration methods, multiphase flow and flow assurance issues, novel processing (e.g., subsea) techniques, raw gas transmission methods, gas processing/LNG technologies, sales gas transmission and storage. The Journal of Natural Gas Science & Engineering will also focus on economical, environmental, management and safety issues related to natural gas production, processing and transportation.