Host defense peptide mimicking antimicrobial amino acid polymers and beyond: Design, synthesis and biomedical applications

IF 26 1区 化学 Q1 POLYMER SCIENCE Progress in Polymer Science Pub Date : 2023-06-01 DOI:10.1016/j.progpolymsci.2023.101679
Yueming Wu , Kang Chen , Jiangzhou Wang , Minzhang Chen , Yuan Chen , Yunrui She , Zi Yan , Runhui Liu
{"title":"Host defense peptide mimicking antimicrobial amino acid polymers and beyond: Design, synthesis and biomedical applications","authors":"Yueming Wu ,&nbsp;Kang Chen ,&nbsp;Jiangzhou Wang ,&nbsp;Minzhang Chen ,&nbsp;Yuan Chen ,&nbsp;Yunrui She ,&nbsp;Zi Yan ,&nbsp;Runhui Liu","doi":"10.1016/j.progpolymsci.2023.101679","DOIUrl":null,"url":null,"abstract":"<div><p><span>Microbial infections endanger human health and life. Conventional antibiotics has saved countless human lives, however, is seriously challenged by the quick emergence of antibiotic-resistant pathogens. It is urgent to develop new types of antimicrobial agents to treat antibiotic-resistant microbial infections. Host defense peptides (HDPs) have broad-spectrum antimicrobial activity and low susceptibility to antimicrobial resistance, therefore, have been actively studied to develop promising antimicrobial agents. However, natural HDPs are structurally unstable due to their easy hydrolysis by proteases. Sequence-defined peptides have been explored as HDP mimics and have proven as promising candidates of antimicrobial drugs. Nevertheless, preparation of these HDP-mimicking peptides by solid-phase synthesis is time-consuming, expensive, and difficult for large scale synthesis. Assisted by the development of polymerization </span>chemistry<span><span><span>, polypeptides can be prepared in the form of </span>amino acid<span> polymers conveniently and at large scales using the polymerization strategy. Amino acid polymers, also known as poly(amino acid)s, have the same or similar backbone structure as natural peptides and have excellent biocompatibility. Several classes of such antimicrobial polymers have been explored as synthetic mimics of HDPs including α-amino acid polymers, β-amino acid polymers, peptoid polymers, amino acid hybrid polymers, and peptide mimicking polymers such as poly(2-oxazoline)s. To tune the biological activities and obtain the optimal antimicrobial polymers, key structure characteristics of HDPs are involved and investigated such as positive charges and the hydrophobic/hydrophilic amphiphilic structure. In this review, we provide an overview of research in the last decade about the design of HDP-mimicking antimicrobial amino acid polymers and beyond, including positive charge, amphiphilic structure, chain length, end group, </span></span>hydrophilicity<span>, stereochemistry<span>, secondary structure, topology, self-assembly and backbone structure, as well as the major applications of antimicrobial amino acid polymers. Finally, we provide a perspective on the comparison between antimicrobial peptides and antimicrobial amino acid polymers, as well as some key challenges that still need to be addressed for possible clinical application of HDP-mimicking antimicrobial amino acid polymers.</span></span></span></p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"141 ","pages":"Article 101679"},"PeriodicalIF":26.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023000345","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Microbial infections endanger human health and life. Conventional antibiotics has saved countless human lives, however, is seriously challenged by the quick emergence of antibiotic-resistant pathogens. It is urgent to develop new types of antimicrobial agents to treat antibiotic-resistant microbial infections. Host defense peptides (HDPs) have broad-spectrum antimicrobial activity and low susceptibility to antimicrobial resistance, therefore, have been actively studied to develop promising antimicrobial agents. However, natural HDPs are structurally unstable due to their easy hydrolysis by proteases. Sequence-defined peptides have been explored as HDP mimics and have proven as promising candidates of antimicrobial drugs. Nevertheless, preparation of these HDP-mimicking peptides by solid-phase synthesis is time-consuming, expensive, and difficult for large scale synthesis. Assisted by the development of polymerization chemistry, polypeptides can be prepared in the form of amino acid polymers conveniently and at large scales using the polymerization strategy. Amino acid polymers, also known as poly(amino acid)s, have the same or similar backbone structure as natural peptides and have excellent biocompatibility. Several classes of such antimicrobial polymers have been explored as synthetic mimics of HDPs including α-amino acid polymers, β-amino acid polymers, peptoid polymers, amino acid hybrid polymers, and peptide mimicking polymers such as poly(2-oxazoline)s. To tune the biological activities and obtain the optimal antimicrobial polymers, key structure characteristics of HDPs are involved and investigated such as positive charges and the hydrophobic/hydrophilic amphiphilic structure. In this review, we provide an overview of research in the last decade about the design of HDP-mimicking antimicrobial amino acid polymers and beyond, including positive charge, amphiphilic structure, chain length, end group, hydrophilicity, stereochemistry, secondary structure, topology, self-assembly and backbone structure, as well as the major applications of antimicrobial amino acid polymers. Finally, we provide a perspective on the comparison between antimicrobial peptides and antimicrobial amino acid polymers, as well as some key challenges that still need to be addressed for possible clinical application of HDP-mimicking antimicrobial amino acid polymers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宿主防御肽模拟抗菌氨基酸聚合物及超越:设计,合成和生物医学应用
微生物感染危害人类健康和生命。传统抗生素挽救了无数人的生命,然而,抗生素耐药病原体的迅速出现严重挑战了传统抗生素。开发新型抗菌药物治疗耐药微生物感染是当务之急。宿主防御肽(Host defense peptide, hdp)具有广谱抗菌活性和低耐药性的特点,因此被积极研究以开发有前景的抗菌药物。然而,天然HDPs结构不稳定,因为它们容易被蛋白酶水解。序列定义肽已被探索作为HDP模拟物,并已被证明是有前途的候选抗菌药物。然而,通过固相合成方法制备这些hdp模拟肽耗时、昂贵且难以大规模合成。随着聚合化学的发展,利用聚合技术可以方便地大规模制备氨基酸聚合物形式的多肽。氨基酸聚合物,又称聚氨基酸,具有与天然肽相同或相似的主链结构,具有优良的生物相容性。研究人员已经开发了几种抗菌聚合物作为hdp的合成模拟物,包括α-氨基酸聚合物、β-氨基酸聚合物、类肽聚合物、氨基酸杂化聚合物和肽模拟聚合物,如聚2-恶唑啉。为了调整生物活性并获得最佳的抗菌聚合物,研究了HDPs的主要结构特征,如正电荷和疏水/亲水两亲结构。本文从正电荷、两亲结构、链长、端基、亲水性、立体化学、二级结构、拓扑结构、自组装和主链结构等方面综述了近十年来模拟hdp抗菌氨基酸聚合物的研究进展,并对抗菌氨基酸聚合物的主要应用进行了综述。最后,我们对抗菌肽和抗菌氨基酸聚合物的比较进行了展望,并提出了模拟hdp的抗菌氨基酸聚合物可能在临床应用中仍需要解决的一些关键挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Polymer Science
Progress in Polymer Science 化学-高分子科学
CiteScore
48.70
自引率
1.10%
发文量
54
审稿时长
38 days
期刊介绍: Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field. The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field. The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.
期刊最新文献
Advanced Functional Membranes Based on Amphiphilic Copolymers Editorial Board Progress toward sustainable polymer technologies with ball-mill grinding Stability of Intrinsically Stretchable Polymer Photovoltaics: Fundamentals, Achievements, and Perspectives Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1