{"title":"Controlling morphology and microstructure of conjugated polymers via solution-state aggregation","authors":"Ze-Fan Yao, Jie-Yu Wang, Jian Pei","doi":"10.1016/j.progpolymsci.2022.101626","DOIUrl":null,"url":null,"abstract":"<div><p>The macroscopic functions and properties of conjugated polymers depend on their microcosmic morphology and microstructure in the solid state. However, such morphology and microstructure from molecules to solid states are complicated. Therefore, it is a significant challenge to reveal the relationship among molecular structures to the complex microstructure and finally to device functions. This review focuses on the formation, behavior, and evolution of solution-state aggregation of conjugated polymers, which can influence and even determine the solid-state morphology and microstructure, ultimately clarifying the relationship between the microstructure and the properties of conjugated polymers. The critical role of solution-state aggregation is highlighted from a theoretical understanding of molecular interactions between polymer chains (conjugated backbones and/or flexible side chains) and solvent molecules. We highlight the recent progress on high-performance polymer-based devices through the solution-state aggregation strategy. Furthermore, we summarize the challenges and essential research direction on the solution-state aggregation, which will be addressed and established in the future. Therefore, an in-depth understanding of polymer aggregation will advance the development of high-performance conjugated polymers in various functional devices.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"136 ","pages":"Article 101626"},"PeriodicalIF":26.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670022001241","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 14
Abstract
The macroscopic functions and properties of conjugated polymers depend on their microcosmic morphology and microstructure in the solid state. However, such morphology and microstructure from molecules to solid states are complicated. Therefore, it is a significant challenge to reveal the relationship among molecular structures to the complex microstructure and finally to device functions. This review focuses on the formation, behavior, and evolution of solution-state aggregation of conjugated polymers, which can influence and even determine the solid-state morphology and microstructure, ultimately clarifying the relationship between the microstructure and the properties of conjugated polymers. The critical role of solution-state aggregation is highlighted from a theoretical understanding of molecular interactions between polymer chains (conjugated backbones and/or flexible side chains) and solvent molecules. We highlight the recent progress on high-performance polymer-based devices through the solution-state aggregation strategy. Furthermore, we summarize the challenges and essential research direction on the solution-state aggregation, which will be addressed and established in the future. Therefore, an in-depth understanding of polymer aggregation will advance the development of high-performance conjugated polymers in various functional devices.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.