{"title":"Modulation of oxidative DNA damage levels by dietary fat and calories","authors":"Zora Djuric , David Kritschevsky","doi":"10.1016/0921-8734(93)90019-Y","DOIUrl":null,"url":null,"abstract":"<div><p>Decreased dietary intake of fat and/or calories generally results in a lower incidence of mammary gland tumors in rodents. Feeding of either low-fat or calorie-restricted diets to rats also has been shown to result in decreased levels of oxidative DNA damage. Since oxidative DNA damage is suggested to have a role in carcinogenesis, this may be one mechanism by which dietary change can reduce cancer risk. The effects of calorie-restricted diets on both oxidative DNA damage levels and mammary gland tumor incidence are generally more pronounced than that of low-fat diets. There is, however, some difficulty in defining what amount of fat should be used to prepare ‘low-fat’ and ‘high-fat’ rodent diets as well as what a suitable fat intake for control diets should be in studies that examine the effects of dietary fat and/or calories on tumorigenesis. In particular, the promoting effects of dietary fat may be exerted only up to a certain level of fat, above which no further effect is observed. Another difficulty in the interpretation of the results is that there may be a time-dependent effect of high fat diets on oxidative damage, with increased damage resulting only when the diets are fed for longer periods of time. The appropriate experimental approach to model human dietary exposures therefore remains to be determined. Although the effects of caloric intake on mammary gland tumorigenesis appear to be more pronounced than that of fat intake, low-fat diets still may be useful as a preventive measure in human populations to reduce breast cancer risk for individuals who cannot safely reduce their caloric intake.</p></div>","PeriodicalId":100937,"journal":{"name":"Mutation Research/DNAging","volume":"295 4","pages":"Pages 181-190"},"PeriodicalIF":0.0000,"publicationDate":"1993-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-8734(93)90019-Y","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNAging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/092187349390019Y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Decreased dietary intake of fat and/or calories generally results in a lower incidence of mammary gland tumors in rodents. Feeding of either low-fat or calorie-restricted diets to rats also has been shown to result in decreased levels of oxidative DNA damage. Since oxidative DNA damage is suggested to have a role in carcinogenesis, this may be one mechanism by which dietary change can reduce cancer risk. The effects of calorie-restricted diets on both oxidative DNA damage levels and mammary gland tumor incidence are generally more pronounced than that of low-fat diets. There is, however, some difficulty in defining what amount of fat should be used to prepare ‘low-fat’ and ‘high-fat’ rodent diets as well as what a suitable fat intake for control diets should be in studies that examine the effects of dietary fat and/or calories on tumorigenesis. In particular, the promoting effects of dietary fat may be exerted only up to a certain level of fat, above which no further effect is observed. Another difficulty in the interpretation of the results is that there may be a time-dependent effect of high fat diets on oxidative damage, with increased damage resulting only when the diets are fed for longer periods of time. The appropriate experimental approach to model human dietary exposures therefore remains to be determined. Although the effects of caloric intake on mammary gland tumorigenesis appear to be more pronounced than that of fat intake, low-fat diets still may be useful as a preventive measure in human populations to reduce breast cancer risk for individuals who cannot safely reduce their caloric intake.