Cloning of cDNAs with possible association with senescence and immortalization of human cells

Yasuhiro Satoh , Masamichi Kashimura , Shigeru Kaneko , Yuji Karasaki , Ken Higashi , Sadao Gotoh
{"title":"Cloning of cDNAs with possible association with senescence and immortalization of human cells","authors":"Yasuhiro Satoh ,&nbsp;Masamichi Kashimura ,&nbsp;Shigeru Kaneko ,&nbsp;Yuji Karasaki ,&nbsp;Ken Higashi ,&nbsp;Sadao Gotoh","doi":"10.1016/0921-8734(94)90005-1","DOIUrl":null,"url":null,"abstract":"<div><p>Normal human diploid fibroblasts (HDF) have a finite life span in vitro and have used as a model system for the study of in vivo aging. Little in known about how changes in gene expression may affect the immortalization of human fibroblasts. We looked for cDNA clones whose mRNAs were differentially expressed between mortal senescent SV40-transformed human fibroblasts (B-32) and the immortal counterparts (B-32F) derived from B-32 cells. We identified three cDNA isolates by subtractive differential hybridization with <sup>32</sup>P-labeled cDNA probes from B-32 cells and B-32F cells. Nucleotide sequence analysis of these cDNA clones revealed that they wer homologous to the human vimentin, a human mitochondrial gene and a human gene of unknown nature. Slot blot and Northern blot analyses demonstrated that the former two were preferentially expressed in senescent B-32 cells and the last one was less expressed in B-32F immortal cells.</p></div>","PeriodicalId":100937,"journal":{"name":"Mutation Research/DNAging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0921-8734(94)90005-1","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNAging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0921873494900051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Normal human diploid fibroblasts (HDF) have a finite life span in vitro and have used as a model system for the study of in vivo aging. Little in known about how changes in gene expression may affect the immortalization of human fibroblasts. We looked for cDNA clones whose mRNAs were differentially expressed between mortal senescent SV40-transformed human fibroblasts (B-32) and the immortal counterparts (B-32F) derived from B-32 cells. We identified three cDNA isolates by subtractive differential hybridization with 32P-labeled cDNA probes from B-32 cells and B-32F cells. Nucleotide sequence analysis of these cDNA clones revealed that they wer homologous to the human vimentin, a human mitochondrial gene and a human gene of unknown nature. Slot blot and Northern blot analyses demonstrated that the former two were preferentially expressed in senescent B-32 cells and the last one was less expressed in B-32F immortal cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克隆可能与人类细胞衰老和永生相关的cdna
正常人类二倍体成纤维细胞(HDF)在体外具有有限的寿命,已被用作体内衰老研究的模型系统。对于基因表达的变化如何影响人类成纤维细胞的永生化,我们知之甚少。我们寻找mrna在sv40转化的人类衰老成纤维细胞(B-32)和来自B-32细胞的不朽成纤维细胞(B-32F)之间表达差异的cDNA克隆。我们用32p标记的cDNA探针从B-32细胞和B-32F细胞中分离出3个cDNA分离株。对这些cDNA克隆进行核苷酸序列分析,发现它们分别与人类vimentin、人类线粒体基因和人类未知基因同源。Slot blot和Northern blot分析表明,前两个基因在衰老B-32细胞中优先表达,后一个基因在B-32F不朽细胞中表达较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Publisher's note Editorial An accessory protein enhances both DNA binding and activity of DNA polymerase α isolated from normal, but not transformed, human fibroblasts Differences in the spectrum of spontaneous mutations in the hprt gene between tumor cells of the microsatellite mutator phenotype Spermatid micronucleus analysis of aging effects in hamsters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1