Effects of Long-Term Streptozotocin Diabetes on Cytoskeletal and Cytosolic Phosphofructokinase and the Levels of Glucose 1,6-Bisphosphate and Fructose 2,6-Bisphosphate in Different Rat Muscles

Chenzion M., Livnat T., Beitner R.
{"title":"Effects of Long-Term Streptozotocin Diabetes on Cytoskeletal and Cytosolic Phosphofructokinase and the Levels of Glucose 1,6-Bisphosphate and Fructose 2,6-Bisphosphate in Different Rat Muscles","authors":"Chenzion M.,&nbsp;Livnat T.,&nbsp;Beitner R.","doi":"10.1006/bmmb.1994.1069","DOIUrl":null,"url":null,"abstract":"<div><p>We show here that long-term streptozotocin diabetes affects differently the intracellular distribution of phosphofructokinase (PFK), the rate-limiting enzyme of glycolysis, in tibialis anterior and gastrocnemius muscles. Diabetes, which causes ultrastructural damage in both muscle fibers, induced a decrease in PFK binding to cytoskeleton in gastrocnemius muscle but not in the tibialis anterior muscle. However, the allosteric activity of cytoskeleton-bound and soluble PFK was reduced in both kinds of muscles, most probably due to the decrease in the level of glucose 1,6-bisphosphate, the potent allosteric activator of the enzyme. Levels of fructose 2,6-bisphosphate remained unchanged. A change in the allosteric properties of the cytoskeleton-bound PFK was found only in the diabetic tibialis anterior muscle; in contrast to normal muscle, where only the soluble but not the bound enzyme responded to allosteric effecters, in the diabetic tibialis anterior muscle, the bound enzyme exhibited allosteric properties similar to the soluble enzyme, The reduction in both cytosolic and cytoskeletal PFK, and, thereby, glycolysis in these two kinds of muscles, which results most probably from the reported high pathological intracellular Ca<sup>2+</sup> concentration, may contribute to muscle damage in diabetes.</p></div>","PeriodicalId":8752,"journal":{"name":"Biochemical medicine and metabolic biology","volume":"53 2","pages":"Pages 137-144"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/bmmb.1994.1069","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical medicine and metabolic biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885450584710693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We show here that long-term streptozotocin diabetes affects differently the intracellular distribution of phosphofructokinase (PFK), the rate-limiting enzyme of glycolysis, in tibialis anterior and gastrocnemius muscles. Diabetes, which causes ultrastructural damage in both muscle fibers, induced a decrease in PFK binding to cytoskeleton in gastrocnemius muscle but not in the tibialis anterior muscle. However, the allosteric activity of cytoskeleton-bound and soluble PFK was reduced in both kinds of muscles, most probably due to the decrease in the level of glucose 1,6-bisphosphate, the potent allosteric activator of the enzyme. Levels of fructose 2,6-bisphosphate remained unchanged. A change in the allosteric properties of the cytoskeleton-bound PFK was found only in the diabetic tibialis anterior muscle; in contrast to normal muscle, where only the soluble but not the bound enzyme responded to allosteric effecters, in the diabetic tibialis anterior muscle, the bound enzyme exhibited allosteric properties similar to the soluble enzyme, The reduction in both cytosolic and cytoskeletal PFK, and, thereby, glycolysis in these two kinds of muscles, which results most probably from the reported high pathological intracellular Ca2+ concentration, may contribute to muscle damage in diabetes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长期链脲佐菌素糖尿病对不同大鼠肌肉细胞骨架和胞质磷酸果糖激酶及葡萄糖1,6-二磷酸和果糖2,6-二磷酸水平的影响
我们在这里表明,长期链脲佐菌素糖尿病对胫骨前肌和腓肠肌中糖酵解限速酶磷酸果糖激酶(PFK)的细胞内分布有不同的影响。糖尿病引起两种肌肉纤维的超微结构损伤,导致腓肠肌中PFK与细胞骨架结合的减少,而在胫前肌中则没有。然而,细胞骨架结合和可溶性PFK的变构活性在两种肌肉中都降低了,很可能是由于葡萄糖1,6-二磷酸水平的降低,葡萄糖是该酶的有效变构激活剂。果糖2,6-二磷酸水平保持不变。细胞骨架结合的PFK的变构特性的变化仅在糖尿病胫骨前肌中发现;与正常肌肉相比,只有可溶性酶而不是结合酶对变构效应有反应,在糖尿病胫骨前肌中,结合酶表现出与可溶性酶相似的变构特性。胞质和细胞骨架PFK的减少,从而导致这两种肌肉的糖酵解,这很可能是由于报道的高病理性细胞内Ca2+浓度,可能导致糖尿病肌肉损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Proteinuria in Experimental Diabetes Mellitus Time Dependence of Plasma Malondialdehyde, Oxypurines, and Nucleosides during Incomplete Cerebral Ischemia in the Rat ATP-Dependent Transport of Glutathione-N-Ethylmaleimide Conjugate across Erythrocyte Membrane Enzymatic and Secretory Activities in Pancreatic-Islets of Non-Insulin-Dependent Diabetic Rats after Short-Term Infusion of Succinic Acid Monomethyl Ester Rabbit Optic Nerve Phosphorylates Glucose through a Glucokinase-like Enzyme: Studies in Normal and Spontaneously Hyperglycemic Animals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1