{"title":"Hexokinase Binding in Ischemic and Reperfused Piglet Brain","authors":"Gray S.M., Adams V., Yamashita Y., Le S.P., Goddardfinegold J., Mccabe E.R.B.","doi":"10.1006/bmmb.1994.1070","DOIUrl":null,"url":null,"abstract":"<div><p>Hexokinase catalyzes the first step in cerebral glucose utilization and is a rate-limiting enzyme in glycolysis. Glucose utilization is tightly coupled to cerebral blood flow so that during ischemia the brain has a decreased supply of glucose, as well as oxygen. We studied hexokinase enzymatic activity in a newborn piglet model of ischemia-reperfusion to determine if any changes in the activity or mitochondrial binding of the enzyme occurred. We observed that mitochondrial binding of cortical HK increased from 55 to 71% with ischemia and returned toward control levels, but did not completely recover, after 2 h of reperfusion.</p></div>","PeriodicalId":8752,"journal":{"name":"Biochemical medicine and metabolic biology","volume":"53 2","pages":"Pages 145-148"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/bmmb.1994.1070","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical medicine and metabolic biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088545058471070X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Hexokinase catalyzes the first step in cerebral glucose utilization and is a rate-limiting enzyme in glycolysis. Glucose utilization is tightly coupled to cerebral blood flow so that during ischemia the brain has a decreased supply of glucose, as well as oxygen. We studied hexokinase enzymatic activity in a newborn piglet model of ischemia-reperfusion to determine if any changes in the activity or mitochondrial binding of the enzyme occurred. We observed that mitochondrial binding of cortical HK increased from 55 to 71% with ischemia and returned toward control levels, but did not completely recover, after 2 h of reperfusion.