Nanowire-embedded polymer photomultiplication photodiode with EQE over 250,000%

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2021-08-15 DOI:10.1016/j.cej.2021.129354
Taewook Park, Sangjun Lee, Mingyun Kang, Seong Hoon Yu, Geon-Hee Nam, Kyu Min Sim, Dae Sung Chung
{"title":"Nanowire-embedded polymer photomultiplication photodiode with EQE over 250,000%","authors":"Taewook Park,&nbsp;Sangjun Lee,&nbsp;Mingyun Kang,&nbsp;Seong Hoon Yu,&nbsp;Geon-Hee Nam,&nbsp;Kyu Min Sim,&nbsp;Dae Sung Chung","doi":"10.1016/j.cej.2021.129354","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, a photomultiplication-type organic photodiode (PM-OPD) with a nanowire (NW)-embedded polymer morphology is introduced aiming prolonged carrier lifetime and enhanced carrier mobility, both of which contribute to more efficient gain generation mechanism. Growth of well-defined NWs with low structural defects within poly(3-hexylthiophene-2,5-diyl) (P3HT):<span>[6]</span>, <span>[6]</span>-phenyl-C<sub>71</sub>-butyricacid-methylester (PC<sub>71</sub>BM) (100:1 w/w) bulk-heterojunction (BHJ) active layer is achieved using a typical aging method, confirmed by UV–Vis absorption spectroscopy, atomic force microscopy and grazing incidence X-ray diffraction analyses. Transient photocurrent analyses clearly show that the NW-embedded P3HT morphology efficiently suppresses electron detrapping from localized PC<sub>71</sub>BM, leading to prolonged minority carrier recombination time. Space charge limited current study shows that gradual increase in NW density in BHJ film can lead to increase of hole mobility along the vertical direction, presumably due to increased formation of efficient percolation pathways. Thanks to such synergetic contributions of NW-embedding, remarkable increase of external quantum efficiency (EQE) up to 250,000%, responsivity up to 1300 A W<sup>−1</sup> and high specific detectivity up to 6.3 × 10<sup>13</sup> Jones can be realized by embedding an optimal amount of NW into conventional PM-OPD structured as ITO/PEDOT:PSS/BHJ/Al. This work shows the importance of nanomorphology of the active layer in PM-OPD to achieve high EQE.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"418 ","pages":"Article 129354"},"PeriodicalIF":13.2000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cej.2021.129354","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894721009426","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 10

Abstract

In this work, a photomultiplication-type organic photodiode (PM-OPD) with a nanowire (NW)-embedded polymer morphology is introduced aiming prolonged carrier lifetime and enhanced carrier mobility, both of which contribute to more efficient gain generation mechanism. Growth of well-defined NWs with low structural defects within poly(3-hexylthiophene-2,5-diyl) (P3HT):[6], [6]-phenyl-C71-butyricacid-methylester (PC71BM) (100:1 w/w) bulk-heterojunction (BHJ) active layer is achieved using a typical aging method, confirmed by UV–Vis absorption spectroscopy, atomic force microscopy and grazing incidence X-ray diffraction analyses. Transient photocurrent analyses clearly show that the NW-embedded P3HT morphology efficiently suppresses electron detrapping from localized PC71BM, leading to prolonged minority carrier recombination time. Space charge limited current study shows that gradual increase in NW density in BHJ film can lead to increase of hole mobility along the vertical direction, presumably due to increased formation of efficient percolation pathways. Thanks to such synergetic contributions of NW-embedding, remarkable increase of external quantum efficiency (EQE) up to 250,000%, responsivity up to 1300 A W−1 and high specific detectivity up to 6.3 × 1013 Jones can be realized by embedding an optimal amount of NW into conventional PM-OPD structured as ITO/PEDOT:PSS/BHJ/Al. This work shows the importance of nanomorphology of the active layer in PM-OPD to achieve high EQE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米线嵌入聚合物光电倍增二极管,EQE超过250,000%
在这项工作中,引入了一种具有纳米线嵌入聚合物形态的光电倍增型有机光电二极管(PM-OPD),旨在延长载流子寿命和增强载流子迁移率,这两者都有助于更有效的增益产生机制。在聚(3-己基噻吩-2,5-二基)(P3HT):[6],[6]-苯基- c71 -丁酸-甲基lester (PC71BM) (100:1 w/w)体异质结(BHJ)活性层中,采用典型的时效方法生长了具有明确定义的低结构缺陷的NWs,并得到了紫外-可见吸收光谱、原子力显微镜和擦入射x射线衍射分析的证实。瞬态光电流分析清楚地表明,nw嵌入的P3HT形态有效地抑制了局部PC71BM的电子脱陷,导致少数载流子复合时间延长。空间电荷限制目前的研究表明,BHJ膜中NW密度的逐渐增加可以导致沿垂直方向的孔迁移率增加,这可能是由于有效渗流路径的形成增加。通过在ITO/PEDOT:PSS/BHJ/Al结构的PM-OPD中嵌入最优数量的NW,可以实现外量子效率(EQE)的显著提高(高达250000%),响应率高达1300 A W−1,比探测率高达6.3 × 1013 Jones。这项工作表明了PM-OPD中活性层纳米形貌对实现高EQE的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
3D printed hierarchical porous amino-functionalized graphene oxide/activated carbon adsorbent composites for pharmaceuticals removal Enhanced interphase kinetics via regulation of solvation structure for high performance magnesium metal batteries Mechanically robust long-persistent luminescent hydrogels enabled by synergistic multi-level rigidity and confined crystallization Phosphorus–carbon nitride hybridization enables spatial co-localization of electrons and reactants for enhancing metal-free nitrogen photofixation Preparation of porous SPES/PES cation exchange membrane with interconnected spongy morphology for membrane capacitive deionization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1