{"title":"Glycolytic enzymes as DNA binding proteins.","authors":"Z Ronai","doi":"10.1016/0020-711x(93)90123-v","DOIUrl":null,"url":null,"abstract":"<p><p>1. Numerous studies have demonstrated the presence of at least four glycolytic enzymes in the nuclear compartment of several cell systems. 2. These include, lactate dehydrogenase, phosphoglycerate kinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase. 3. In some cases the glycolytic enzymes found in the nuclei were a modified form from that found in the cytoplasmic counterpart. 4. In all four cases, the nuclear form of these glycolytic enzymes has been reported to bind DNA. 5. Although none of these enzymes interact with a specific target DNA sequence, their association with DNA may play a role in transcription and replication of DNA through general stabilization of the nuclear matrix or chromatin structure. 6. The present review aims to summarize the current understanding of this phenomenon and to examine the role of the DNA-binding activities of the glycolytic enzymes in cell growth and differentiation.</p>","PeriodicalId":22539,"journal":{"name":"The International journal of biochemistry","volume":"25 7","pages":"1073-6"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-711x(93)90123-v","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International journal of biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/0020-711x(93)90123-v","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107
Abstract
1. Numerous studies have demonstrated the presence of at least four glycolytic enzymes in the nuclear compartment of several cell systems. 2. These include, lactate dehydrogenase, phosphoglycerate kinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase. 3. In some cases the glycolytic enzymes found in the nuclei were a modified form from that found in the cytoplasmic counterpart. 4. In all four cases, the nuclear form of these glycolytic enzymes has been reported to bind DNA. 5. Although none of these enzymes interact with a specific target DNA sequence, their association with DNA may play a role in transcription and replication of DNA through general stabilization of the nuclear matrix or chromatin structure. 6. The present review aims to summarize the current understanding of this phenomenon and to examine the role of the DNA-binding activities of the glycolytic enzymes in cell growth and differentiation.