Structural basis of p21H-ras molecular switch inhibition by a neutralizing antibody

William M. Gallagher , Guy H. Grant
{"title":"Structural basis of p21H-ras molecular switch inhibition by a neutralizing antibody","authors":"William M. Gallagher ,&nbsp;Guy H. Grant","doi":"10.1016/0263-7855(96)00020-3","DOIUrl":null,"url":null,"abstract":"<div><p>The ras oncogene product p21 functions as a molecular switch in the early section of the signal transduction pathway that is involved in cell growth and differentiation. When the protein is in its GTP-complexed form it is active in signal transduction, whereas it is inactive in its GDP-complexed form. The transforming activity of p21<sup><em>ras</em></sup> is neutralized by the mouse monoclonal antibody Y13-259, possibly by preventing GDP-GTP exchange. A molecular model of the variable fragment of Y13-259 has been derived using a knowledge-based prediction approach and computer-assisted modeling techniques. An analysis of this model while complexed with p21<sup><em>ras</em></sup>/(GDP) indicated that the two molecular switch regions are constrained by complex formation. Antibody binding inhibits GDP-GTP exchange through a mechanism of steric hindrance. Having identified necessary bound sites for inhibition, and explored their electrostatic properties, it should be possible to proceed with the design of antibody mimics as therapeutic agents in cancer control.</p></div>","PeriodicalId":73837,"journal":{"name":"Journal of molecular graphics","volume":"14 1","pages":"Pages 42-50"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0263-7855(96)00020-3","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0263785596000203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The ras oncogene product p21 functions as a molecular switch in the early section of the signal transduction pathway that is involved in cell growth and differentiation. When the protein is in its GTP-complexed form it is active in signal transduction, whereas it is inactive in its GDP-complexed form. The transforming activity of p21ras is neutralized by the mouse monoclonal antibody Y13-259, possibly by preventing GDP-GTP exchange. A molecular model of the variable fragment of Y13-259 has been derived using a knowledge-based prediction approach and computer-assisted modeling techniques. An analysis of this model while complexed with p21ras/(GDP) indicated that the two molecular switch regions are constrained by complex formation. Antibody binding inhibits GDP-GTP exchange through a mechanism of steric hindrance. Having identified necessary bound sites for inhibition, and explored their electrostatic properties, it should be possible to proceed with the design of antibody mimics as therapeutic agents in cancer control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中和抗体抑制p21H-ras分子开关的结构基础
ras癌基因产物p21在参与细胞生长和分化的信号转导途径的早期阶段起着分子开关的作用。当蛋白质处于gtp络合形式时,它在信号转导中是活跃的,而在其gdp络合形式中是无活性的。p21ras的转化活性被小鼠单克隆抗体Y13-259中和,可能是通过阻止GDP-GTP交换。利用基于知识的预测方法和计算机辅助建模技术推导了Y13-259可变片段的分子模型。当与p21ras/(GDP)络合时,对该模型的分析表明,两个分子开关区域受到络合物形成的约束。抗体结合通过位阻机制抑制GDP-GTP交换。在确定了必要的抑制结合位点,并探索了它们的静电特性后,应该有可能继续设计抗体模拟物作为癌症控制的治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of dry-aging conditions for chicken meat using the electric field supercooling system. Diffusion Tensor Imaging in Parenchymal Neuro-Behçet's Disease. Resilience predicts posttraumatic cognitions after a trauma reminder task and subsequent positive emotion induction among veterans with PTSD. Correction to Szabo et al. (2022). HOLE: A program for the analysis of the pore dimensions of ion channel structural models Modeling polysaccharides: Present status and challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1