Why spin = 1, 2 species have no electron paramagnetic resonance signal under normal conditions: Possible detection by electron paramagnetic resonance at frequency close to D value?
{"title":"Why spin = 1, 2 species have no electron paramagnetic resonance signal under normal conditions: Possible detection by electron paramagnetic resonance at frequency close to D value?","authors":"Hanqing Wu","doi":"10.1016/S0263-7855(97)00007-6","DOIUrl":null,"url":null,"abstract":"<div><p>A universal EPR simulation program has been created by the author, which is based on the following spin Hamiltonian equation: <span><math><mtext>H = gβB · S + D{S</mtext><msub><mi></mi><mn>z</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext> − </mtext><mtext>S(S + 1)</mtext><mtext>3</mtext><mtext>} + E(S</mtext><msub><mi></mi><mn>x</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext> − S</mtext><msub><mi></mi><mn>y</mn></msub><msup><mi></mi><mn>2</mn></msup><mtext>)</mtext></math></span> where <em>D</em> and <em>e</em> are the axial and rhombic zero-field splitting parameters, respectively. The program can be used for simulation of EPR spectra with half-integer electronic spin (<span><math><mtext>S = </mtext><mtext>n</mtext><mtext>2</mtext></math></span>, <em>n</em> = 3, 5, 7, 9) systems. In this article, the integer spin (<span><math><mtext>S = </mtext><mtext>n</mtext><mtext>2</mtext></math></span>, <em>n</em> = 2, 4) systems are also considered. The EPR simulation results show that when <em>D</em> > frequency, no EPR signal can be seen from EPR simulation; when <em>D</em> ≈ frequency, whichever X/Q/W-band is used, the EPR signal can be seen on the basis of the simulated EPR results presented.</p></div>","PeriodicalId":73837,"journal":{"name":"Journal of molecular graphics","volume":"14 6","pages":"Pages 328-330"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0263-7855(97)00007-6","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263785597000076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A universal EPR simulation program has been created by the author, which is based on the following spin Hamiltonian equation: where D and e are the axial and rhombic zero-field splitting parameters, respectively. The program can be used for simulation of EPR spectra with half-integer electronic spin (, n = 3, 5, 7, 9) systems. In this article, the integer spin (, n = 2, 4) systems are also considered. The EPR simulation results show that when D > frequency, no EPR signal can be seen from EPR simulation; when D ≈ frequency, whichever X/Q/W-band is used, the EPR signal can be seen on the basis of the simulated EPR results presented.