{"title":"The effects of aging and neurodegeneration on apoptosis-associated DNA fragmentation and the benefits of nicotinamide.","authors":"S K Mukherjee, J D Adams","doi":"10.1007/BF02815167","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, the tertiary butylhydroperoxide- (t-BuOOH) treated mouse was used as a model to study the oxidative stress that is associated with various neurodegenerative diseases. DNA was found to be an early target of t-BuOOH attack. Necrosis was associated with extensive DNA fragmentation that occurred in almost all regions of the brain within 20 min following intracerebroventricular (icv) injection of 109.7 mg/kg t-BuOOH. Apoptosis was associated with high levels of DNA fragmentation that was observed at 48 h after icv administration of 21.9 mg/kg t-BuOOH. Susceptibility to DNA damage was found to be age-dependent, since 24-mo-old mice exhibited consistently higher and more pervasive DNA damage than 8 mo-old-mice. Extensive DNA damage was seen in various brain regions in patients with Alzheimer disease (AD) and with both Alzheimer and Parkinson disease (AD-PD). These results directly implicate DNA damage in neurodegeneration. The DNA fragmentation ob-served can lead to both apoptosis and necrosis, as suggested by gel electrophoresis. Nicotinamide, a precursor of NAD in the brain, was able to prevent DNA fragmentation induced by low-dose t-BuOOH, when coadministered with the toxin.</p>","PeriodicalId":18736,"journal":{"name":"Molecular and chemical neuropathology","volume":"32 1-3","pages":"59-74"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02815167","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and chemical neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02815167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
In this work, the tertiary butylhydroperoxide- (t-BuOOH) treated mouse was used as a model to study the oxidative stress that is associated with various neurodegenerative diseases. DNA was found to be an early target of t-BuOOH attack. Necrosis was associated with extensive DNA fragmentation that occurred in almost all regions of the brain within 20 min following intracerebroventricular (icv) injection of 109.7 mg/kg t-BuOOH. Apoptosis was associated with high levels of DNA fragmentation that was observed at 48 h after icv administration of 21.9 mg/kg t-BuOOH. Susceptibility to DNA damage was found to be age-dependent, since 24-mo-old mice exhibited consistently higher and more pervasive DNA damage than 8 mo-old-mice. Extensive DNA damage was seen in various brain regions in patients with Alzheimer disease (AD) and with both Alzheimer and Parkinson disease (AD-PD). These results directly implicate DNA damage in neurodegeneration. The DNA fragmentation ob-served can lead to both apoptosis and necrosis, as suggested by gel electrophoresis. Nicotinamide, a precursor of NAD in the brain, was able to prevent DNA fragmentation induced by low-dose t-BuOOH, when coadministered with the toxin.