Effects of thioacetamide-induced hepatic failure on the N-methyl-D-aspartate receptor complex in the rat cerebral cortex, striatum, and hippocampus. Binding of different ligands and expression of receptor subunit mRNAs.

P Saransaari, S S Oja, H D Borkowska, J Koistinaho, W Hilgier, J Albrecht
{"title":"Effects of thioacetamide-induced hepatic failure on the N-methyl-D-aspartate receptor complex in the rat cerebral cortex, striatum, and hippocampus. Binding of different ligands and expression of receptor subunit mRNAs.","authors":"P Saransaari,&nbsp;S S Oja,&nbsp;H D Borkowska,&nbsp;J Koistinaho,&nbsp;W Hilgier,&nbsp;J Albrecht","doi":"10.1007/BF02815175","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatic encephalopathy (HE) is characterized by symptoms pointing at disturbances in glutamatergic neurotransmission in the brain, particularly in the striatum. The binding parameters of ligands specific for different recognition sites in the N-methyl-D-aspartate (NMDA) receptor complex and the distribution of the receptor subunit mRNAs (NR1, NR2A-D) were assessed in rats with acute HE induced with a hepatotoxin, thioacetamide (TAA). The binding of: 1. L-[3H]glutamate (NMDA-displaceable); 2. [3H]dizocilpine and N-(1-[2-thienyl]-cyclohexyl) [3H]piperidine ([3H]TCP); and 3. The coactivator site agonist [3H]glycine was assayed in purified membranes of the cerebral cortex, hippocampus, and striatum. In HE rats, Bmax of NMDA-displaceable glutamate binding was increased in the cerebral cortex and hippocampus, but slightly decreased in the striatum. In this region, the binding affinity was also slightly increased. In HE, Bmax of [3H]dizocilpine binding was unchanged in the striatum and cerebral cortex, but substantially decreased in the hippocampus. Pretreatment with phorbol ester enhanced the binding of dizocilpine more in HE than in control rats. Bmax of [3H]TCP binding was decreased in the cerebral cortex and striatum, but increased in the hippocampus. The different responses of these two phencyclidine site antagonists to HE may be indicative of a conformational change within the ion channel and/or the presence of microdomains reacting differently to extrinsic factors. HE did not affect glycine binding, but potentiated the maximal stimulation of [3H]dizocilpine binding by glycine in the cerebral cortex. The results emphasize the brain region and domain specificity of the responses of the NMDA receptor complex to HE.</p>","PeriodicalId":18736,"journal":{"name":"Molecular and chemical neuropathology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02815175","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and chemical neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02815175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Hepatic encephalopathy (HE) is characterized by symptoms pointing at disturbances in glutamatergic neurotransmission in the brain, particularly in the striatum. The binding parameters of ligands specific for different recognition sites in the N-methyl-D-aspartate (NMDA) receptor complex and the distribution of the receptor subunit mRNAs (NR1, NR2A-D) were assessed in rats with acute HE induced with a hepatotoxin, thioacetamide (TAA). The binding of: 1. L-[3H]glutamate (NMDA-displaceable); 2. [3H]dizocilpine and N-(1-[2-thienyl]-cyclohexyl) [3H]piperidine ([3H]TCP); and 3. The coactivator site agonist [3H]glycine was assayed in purified membranes of the cerebral cortex, hippocampus, and striatum. In HE rats, Bmax of NMDA-displaceable glutamate binding was increased in the cerebral cortex and hippocampus, but slightly decreased in the striatum. In this region, the binding affinity was also slightly increased. In HE, Bmax of [3H]dizocilpine binding was unchanged in the striatum and cerebral cortex, but substantially decreased in the hippocampus. Pretreatment with phorbol ester enhanced the binding of dizocilpine more in HE than in control rats. Bmax of [3H]TCP binding was decreased in the cerebral cortex and striatum, but increased in the hippocampus. The different responses of these two phencyclidine site antagonists to HE may be indicative of a conformational change within the ion channel and/or the presence of microdomains reacting differently to extrinsic factors. HE did not affect glycine binding, but potentiated the maximal stimulation of [3H]dizocilpine binding by glycine in the cerebral cortex. The results emphasize the brain region and domain specificity of the responses of the NMDA receptor complex to HE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫代乙酰胺诱导的肝功能衰竭对大鼠大脑皮层、纹状体和海马n -甲基- d -天冬氨酸受体复合物的影响不同配体的结合和受体亚基mrna的表达。
肝性脑病(HE)的特点是症状指向大脑中,特别是纹状体中的谷氨酸能神经传递紊乱。在肝毒素硫乙酰胺(TAA)诱导的急性HE大鼠中,研究了n -甲基- d -天冬氨酸(NMDA)受体复合物中不同识别位点特异性配体的结合参数和受体亚基mrna (NR1、NR2A-D)的分布。的绑定:1;L -谷氨酸[3 h] (NMDA-displaceable);2. [3H]二唑西平和N-(1-[2-噻吩基]-环己基)[3H]哌啶([3H]TCP);和3。共激活部位激动剂[3H]甘氨酸在纯化的大脑皮层、海马和纹状体膜中进行检测。HE大鼠大脑皮层和海马区nmda -置换谷氨酸结合Bmax升高,纹状体区Bmax略有下降。在这个区域,结合亲和力也略有增加。在HE组中,纹状体和大脑皮层中[3H]二唑西平结合的Bmax没有变化,但海马中的Bmax明显降低。与对照大鼠相比,佛波酯预处理更能增强二唑西平在HE中的结合。[3H]TCP结合的Bmax在大脑皮层和纹状体中降低,而在海马中升高。这两种苯环利定位点拮抗剂对HE的不同反应可能表明离子通道内的构象变化和/或对外部因素反应不同的微域的存在。HE不影响甘氨酸结合,但增强了甘氨酸对大脑皮层[3H]二唑西平结合的最大刺激。结果强调了NMDA受体复合物对HE反应的脑区和区域特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Immunohistochemical assessment of constitutive and inducible heat-shock protein 70 and ubiquitin in human cerebellum and caudate nucleus. The impact of diabetes on CNS. Role of bioenergetic defects. The effect of 4 beta-phorbol-12,13-dibutyrate and staurosporine on the extracellular glutamate levels during ischemia in the rat striatum. Regional changes of membrane phospholipid concentrations in rabbit spinal cord following brief repeated ischemic insults. Localization of GTPase-activating protein-(GAP) like immunoreactivity in mouse cerebral regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1