{"title":"Ascorbate-stimulated lipid peroxidation and non-heme iron concentrations in Alzheimer disease.","authors":"A C Andorn, R S Britton, B R Bacon, R N Kalaria","doi":"10.1007/BF02815856","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid peroxidation has been suggested to be a potential cause of neuronal damage in neurodegenerative diseases. Changes in several parameters of lipid peroxidation, including basal (unstimulated) lipid peroxidation, stimulated lipid peroxidation, tissue iron concentrations, and the concentrations of some oxygen radical scavengers, have been reported in neurodegenerative diseases. However, the in vitro interaction of oxygen radical scavengers and stimulated lipid peroxidation in neurodegenerative disease has been less well-studied. The purpose of the present study was to determine the effects of oxygen radical scavengers on ascorbate-stimulated lipid peroxidation in Alzheimer disease (AD). We have found that some parameters of ascorbate-stimulated lipid peroxidation are altered in AD and that the effects of superoxide dismutase (SOD) on ascorbate-stimulated lipid peroxidation are significantly different in AD as compared to aged.</p>","PeriodicalId":18736,"journal":{"name":"Molecular and chemical neuropathology","volume":"33 1","pages":"15-26"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/BF02815856","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and chemical neuropathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/BF02815856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Lipid peroxidation has been suggested to be a potential cause of neuronal damage in neurodegenerative diseases. Changes in several parameters of lipid peroxidation, including basal (unstimulated) lipid peroxidation, stimulated lipid peroxidation, tissue iron concentrations, and the concentrations of some oxygen radical scavengers, have been reported in neurodegenerative diseases. However, the in vitro interaction of oxygen radical scavengers and stimulated lipid peroxidation in neurodegenerative disease has been less well-studied. The purpose of the present study was to determine the effects of oxygen radical scavengers on ascorbate-stimulated lipid peroxidation in Alzheimer disease (AD). We have found that some parameters of ascorbate-stimulated lipid peroxidation are altered in AD and that the effects of superoxide dismutase (SOD) on ascorbate-stimulated lipid peroxidation are significantly different in AD as compared to aged.